FINAL PROJECT REPORT PRESENTED TO THE INTERNATIONAL TROPICAL TIMBER ORGANISATION (ITTO)

PROJECT PD 10/87 (F)

FOREST MANAGEMENT OF NATURAL FOREST IN MALAYSIA

SUBMITTED BY
FORESTRY DEPARTMENT HEADQUARTERS
PENINSULAR MALAYSIA
KUALA LUMPUR

SEPTEMBER 1994

The attached pages and sections are to replace the similar pages and sections of the Final Report as errors were found in these sections.

We apologize for the inconvenience.

The Forestry Department Headquarters, Kuala Lumpur, Malaysia May 1995.

Svend Korsgaard
(ITTO consultant)
.
nup. Du. LRLANG Ypi. ou Treatment 01: CUT ALL $)=30 \mathrm{~cm}$.

FOREAT PROFILE : ALTMTOLGA, AOMA
H.S. SG. LALANG Cpt. 50 Tmt 03 : CUT DIPT) $=35 \mathrm{~cm} / \mathrm{N}$. DIPT) $=30 \mathrm{~cm}$

FOREAY PROFILE : ALTMY0A.981,4.and
H.S. SG. LALANG CPI. OU.
Treatment 02; CUT ALL $=45 \mathrm{~cm}$.

FOREST PROFILE: AKTMT02sA1,40ho
H.S. SG. LALANG Cpt. 50 Tmt 04: CUT DIPT $)=50 \mathrm{~cm} /$ N.DIPT $\rangle=45 \mathrm{~cm}$

FOREAT PROFILE : BLTMTOA981,AOLA
-
H.S. SG.LALANG Cpt. 50
H.S. SG. LALANG Cpt. 50

Tmt 05 : CUT DIPT $)=65 \mathrm{~cm} / \mathrm{N}$. DIPT $)=60 \mathrm{~cm}$

H.S. SG. LALANG Cpt. 50 Tmt 08: NO LOGGING, VIRGIN CONTROL.

FOREAT PROFILE: BTEM TOA.981, 10 ha
-

Data collected from the study areas are continously entered into computer. A data management system for the project has been developed through an international ITTO consultancy. Computer programmes in FORTRAN have been written to edit, tabulate and analyse the data. In particular, attention is given to analyse the growth parameters such as diameter increment, mortality and the amount of new recruits under the different treatments as advocated by the studies. The programmes are duly documented and manuals for their use prepared, see Appendix D.

TREATMENT BLOCK	$\begin{gathered} \text { BLOCK } \\ \text { NO } \end{gathered}$	ENUMERATION／MEASUREMENT										REMARKS
		FIRST	SECOND	THIRS	FOURTH	FIFTH	SIXTH	SEVENTH	Eghth	NINTH	TENTH	
CLIMBERULANA CUTTING（CL）	$\begin{aligned} & 02 \\ & 07 \\ & 08 \\ & 15 \end{aligned}$	JAN／91 JAN／91 JAN／81 JAN／81	NOV／91 DEC／B DEC／91 NOV／91	0С7／82 OCT／92 OCT／82 OCT／92	$\begin{aligned} & \text { OCT/93 } \\ & \text { OCT/93 } \\ & \text { OCT/93 } \\ & \text { OCT/93 } \end{aligned}$	OCT／94 OCT／94 OCT／94 OCT／94	OCT／95 OCT／85 OCT／85 0C7／95	$\begin{aligned} & \text { OCT/97 } \\ & \text { OCT/97 } \\ & \text { OCT/97 } \\ & \text { OGT/97 } \end{aligned}$	$\begin{aligned} & \text { OCT/99 } \\ & \text { OCT/99 } \\ & \text { OCT/日9 } \\ & \text { OCT/日9 } \end{aligned}$	OCT／01 OCT／01 0ct／01 OCT／01	0 OT／02 $0 C T / 02$ OCT／02 OCT／02	Enumeration／measurament ta canied out once a year for the first flye years．
POISON－GIRDLED OF TREES AND CLMBER／LANA CUTIING（GCL）	$\begin{aligned} & 01 \\ & 12 \\ & 13 \\ & 10 \end{aligned}$	NOV／80 DEC／BO DEC／90 DEC／BO	NOV／81 NOV／91 NOV／81 NOV／81	$\begin{aligned} & \text { OCT/82 } \\ & \text { OCT/92 } \\ & \text { OCT/92 } \\ & \text { OCT/92 } \end{aligned}$	$\begin{aligned} & \text { OCT/93 } \\ & \text { OCT/83 } \\ & \text { OCT/93 } \\ & \text { OCT/93 } \end{aligned}$	0CT／94 OCT／94 OCT／94 OCTI94	$\begin{aligned} & \text { OCT/95 } \\ & \text { OCT/95 } \\ & \text { OCT/R5 } \\ & \text { OCT/85 } \end{aligned}$	$\begin{aligned} & \text { OCT/97 } \\ & \text { OCT/97 } \\ & \text { OCT/97 } \\ & \text { OCT/97 } \end{aligned}$	$\begin{aligned} & \text { OCT/99 } \\ & \text { OCT/R9 } \\ & \text { OCT/99 } \\ & \text { OCT/99 } \end{aligned}$	ocr／a1 OCT／01 0CT／01 OCT／01	$\begin{aligned} & \text { OCT/02 } \\ & \text { OCT/02 } \\ & \text { OCT/02 } \\ & \text { OCT/02 } \end{aligned}$	Enumeration／measurement is carsed out once a yeer for the firet fiva yaars．
GCL AND ENFACHMENT PLANTING（EP）	$\begin{aligned} & 03 \\ & 05 \\ & 09 \\ & 09 \\ & 18 \end{aligned}$	JAN／91 JAN／91 LAN／91 JAN／91	＊AUG／NON／91 AUG／DEC／91 AUG／DEC／91 AUG／NOV／91	Q．JAN／OCT／92 JAN／OCT／B2 JAN／OCT／92 JAN／OCT／E2	＊OCT／93 OCT／93 OCT／83 0CT／33	OCTIGA OCT／94 ©CT／94 OCT／94	OCT／25 0CT／95 0CT／95 0CT／95	OCT197 ©С1／97 0 CT／97 OCT197	OCT／AB OCT／90 OCT／98 OCT／99	OCT／D1 OCT／01 0061／01 OCTIO1	OCT102 0 CT102 0 CT／02 OCT／02	1．Erumaration 1－3 month stior planting 2．Enumeration II－6 month ather Enumeration I 3．Enumeration III－ 6 month site Enumeration II 4．The nexa enumeration if done for every yeartiono years
PLANTATION	$\begin{aligned} & 04 \\ & 11 \\ & 14 \\ & 17 \end{aligned}$	DEC／90 DEC／SO JAN／91 LAN／81	＊AUG／81 AUa／91 AUG／91 AUG／81	＊Jan／92 JaN／92 JAN／92 JAN／92	\＃OCT／93 OCT／93 OCT／93 OCT／93	Oct／s4 OCT／94 OCT／94 OCT／Q4	CCT／0s OCT／25 0CT／95 0CT／85	$\begin{aligned} & \text { оCT/97 } \\ & \text { ©T/97 } \\ & \text { ОCT/97 } \\ & \text { OCT/97 } \end{aligned}$	0 CT／90 ОСТ／89 OCT／98 OCT190	OCTIO 0CT／01 OCT／01 067101	OCT102 007102 OCT／02 OCT／02	1．Enumeration 1－3 month after ptanting 2．Enumeration 1 － 0 month aliter Enumeration 1 3．Enumeration III－ 8 month atter Enumeration II 4．The nead enumerution in cione for avery yeurtioo yman
CONTROL	$\begin{aligned} & 06 \\ & 10 \\ & 18 \\ & 20 \end{aligned}$	FEE／B1 FEB／91 FEBMI MAC／81	DEC／91 DEC／91 DEC／91 NOV／91	$\begin{aligned} & \text { OCT/B2 } \\ & \text { OCT/B2 } \\ & \text { OCT/B2 } \\ & \text { OCT/9R } \end{aligned}$	OCT／93 OCT／93 OCT／93 OCT／93	OCT／P4 OCT／P4 OCT／94 OCT／O4	© CT／BS 0 0．7／95 OCT／95 $007 / 95$	$\begin{aligned} & \text { OCT/日7 } \\ & \text { OCT/97 } \\ & \text { OC/G7 } \\ & \text { OC/G7 } \end{aligned}$	OCT／BS OCT／Q9 OCT／89 OCTIOA	OCT／01 OCT／01 0ct／01 $0 c T / 01$	OCT／02 OCT／02 0 CT／02 OCT／02	Enumeration／measurement is cartiod out once a yoar for the first tive years．

NOTES：TREATMENTS OF ENRICHMENT PLANTING AND PLANTATION
－$\quad=\quad$ I．Reptantungrefling
il．Cloaning of plarting innes
II．Poien－girdled of non－RS specias on planting ines
$\Theta \quad=\quad$ L．Feplanting／renilung if survival rate lesa than 80\％）
1i．Chasing of planting Hner
＊$=\cdots$ ．II．Clesning of planting Ines
II．Poleon－girdled of non－RS species which shaded the planting lines
Pruning $=\quad$ Finst pruning $\vdots 5$ years after planting
Second pruning ： 8 years after planting Third prunting ： 10 yeara after planting
－

TREATMENT BLOCK	$\begin{aligned} & \text { BLOCK } \\ & \text { NO } \end{aligned}$	ENUMERATION/MEASUREMENT										REMARKS
		FIRST	SECOND	THIRD	FOURTH	FIFTH	SIXTH	SEVENTH	EIGHTH	NINTH	TENTH	
CLIMBERJLIANA CUTTING (CL)	$\begin{aligned} & 01 \\ & 12 \\ & 16 \\ & 20 \end{aligned}$	OCT/91 SEPT/91 JUN/91 OCT/91	JUL/94 AUG/94 AUG/94 JUL/94	JUL/95 AUQ/95 AUQ/95 JUL/95	JUL/96 AUG/96 AUG/96 JUL96	JUL/97 AUQ/97 AUG/97 JUL/97	JUL/98 AUG/9B AUG/8B JUL/98	JUL/00 AUG/00 AUG/00 JUL/00	JUL/02 AUG/02 AUG/02 JULO2	JUL/04 AUG/04 AUG/04 JULOB.	JUL/06 AUG/06 AUG/06 JUL/06	Enumeration/measurement ls carried out once a year for the first flve years.
POISON-GIRDLED OF TREES AND CLIMBER/LIANA CUTIING (GCL)	$\begin{aligned} & 08 \\ & 11 \\ & 15 \\ & 18 \end{aligned}$	JUN/91 SEP/91 JUL/91 AUG/91	AUG/94 SEP/94 SEP/94 AUG/94	AUQ/95 SEP/95 SEP/95 AUG/95	AUG/96 SEP/98 SEP/96 AUG/96	AUG/97 SEP/97 SEP/97 AUG/97	AUG/98 AUG/9B AUG/98 AUG/9B	AUG/00 SEP/00 SEP/00 AUG/00	AUG/02 SEP/02 SEP/02 AUG/02	AUG/04 SEP/04 SEP/04 AUG/04	AUG/06 SEP/06 SEP/06 AUQ/06	Enumeration/measurement le carried out once a year tor the first flve years.
GCL AND ENRICHMENT PLANTING (EP)	$\begin{aligned} & 07 \\ & 10 \\ & 13 \\ & 19 \end{aligned}$	*MAY91/FEB92 JUL91/FEB92 AUG91/FEG92 OCT91/FEB92	@SEP93/JUL94 OCT94/AUG94 SEP93/JUL.94 SEP93/SEP94	\#JUL.94/JUL.95 JUL94/JUL.95 JUL94/JUL95 JULO4/JULO5	JUL96 JUL/96 JUL/96 JUL/96	JUL/97 JULIM 97 JUL/97 JUL/97	JUL 198 JUL/98 JUL98 JUL/98	JULIOO JUL/00 JUL/00 JUL/00	JUL/02 JUL/02 JUL/02 JUL/02	JUL/04 JUL/04 JUL/04 JUL/04	JUL/06 JUL/06 JUL106 JUL/06	1. Enumeration I-3 month after planting 2. Enumeration II - 6 month after Enumeration I 3. Enumeration III - 6 month after Enumeration II 4. The next enumaration is done for every year/2 years.
Plantation	$\begin{aligned} & 02 \\ & 03 \\ & 04 \\ & 06 \end{aligned}$	APR/93 APR/93 APR/93 APR/93	SEP/93 SEP/93 SEP/93 SEP/93	JUN/94 JULI94 JUL/94 JUN/94	APR/95 APR/95 APR/95 APR/95	APR/96 APR/96 APR/96 APR/96	APR/97 APR197 APR/97 APR/97	APR/99 APR/99 APR/99 APR/99	APRN01 APF/01 APR/01 APR/01	APR/03 APR/03 APR/03 APR/03	APR/05 APR/05 APR/05 APR/05	1. Enumeration I-3 month after planting 2. Enumeration II - 6 month atter Enumeration I 3. Enumeration III - $\mathbf{6}$ month after Enumeration II 4. The next enumeration is done for every yea/2 years.
CONTROL	$\begin{aligned} & 06 \\ & 09 \\ & 14 \\ & 17 \end{aligned}$	JUL/91 MAR/92 JUL/91 FEB/92	JUL/94 AUG/94 SEP/94 AUG/94	JUL/95 AUG/95 SEP/95 AUG/95	JUL/96 AUG/96 SEP/96 AUG/96	JUL/97 AUG/97 SEP/97 AUG/97	JUL/98 AUG/98 SEP/98 AUG/98	JUL/00 AUG/00 SEP/00 AUG/00	JUL/02 AUG/02 SEP/02 AUG/02	JUL104 AUG/04 SEP/04 AUG/04	JUL/06 AUQ/06 SEP/06 AUG/06	Enumeration/measurement is carred out once a year for the first five years.

NOTES: TREATMENTS OF ENRICHMENT PLANTING AND PLANTATION

* $=\quad$ l. Replanting/reflling
i. Cleaning of planting line
in. Polson-girdled of non-RS spectes on planting the
@ $\quad=\quad$. Replanting/refilling (ff survival rate loss than 80\%) II. Cleaning of planting Ine
$\# \quad=\quad$ il. Cleaning of planting iln
II. Polson-girdled of non-RS spectes which shaded the planting line
2.2 Girdling And Poisoning Of Trees (G)
2.2.1 The trees to be frill-girdled are as follows :-
i) Deformed RS species with diameter $>45 \mathrm{~cm}$ (broken, hollow, knots, crocked), if they * shade the RS trees.
ii) Others species (non-RS species) if :-
a) Deformed (broken, hollow, knots, crocket, which shade the RS seedlings; and
b) Bushy, heavy crown having diameter $<30 \mathrm{~cm}$ which is not capable of producing logs of at least 5 m in length.
2.2.2 Palm tree such as Eugeissona triste (Bertam) and Arenga westerboutil (Langkap) which shade RS species have to be felled and poisoned, namely :-
i) Eugeissona triste (Bertam) fronds should be cut and put them in one place. Then poured the poison into it base or culm; and
ii) Arenga westerhoutil (Langkap) and other stemmed palms should be cut whereby a small hole can be made in their trunks to facilitate poisoning.
2.2.3 Fruit trees such as Parkia speciosa (Petai), Durio zibethinus (Durian), Baccaurea spp. (Rambai), Figs (Ara), Pithecella lobium bubalinum (Kerdas), Bouea spp. (Kundang), Lansium domesticum (Langsat) and Nephelium spp. (Rambutan) are not to be felled and poisoned. Bamboos (Buluh) Fern (Resam) or open area are left untreated.
3.0 PREPARATION BEFORE CARRY OUT 'CL' OR ' G '
3.1 Prior to the treatment, the group leader have to carry out reconnaisance of the study area to confirm the boundries and base lines and to determine the camping sites.
3.2 Group leaders or supervisors who will be carrying out the 'CL' or 'G', have to :-
i) To get instruction and written guidelines regarding treatment procedures to be carried out, in the

Insert Appendix F, page 3 of Species list.

20920	Keruing pipit	Dipterocarpus fagineus
20921	Keruing ropol	Dipterocarpus hasseltii
20922	Keruing sarawak	Dipterocarpus sarawakensis
20923	Keruing sendok	Dipterocarpus concavus
21001	Kapur	Dryobalanops aromatica
21002	Keladan	Dryobalanops oblongifolia
21101	Balau	Shorea spp. (Balau group)
21102	Balau bukit	Shorea foxworthyi
21103	Balau gajah	Shorea submontana
21104	Balau gunong	Shorea astylosa
21105	Balau hitam	Shorea atrinervosa
21106	Balau kumus	Shorea laevis
21107	Balau kumus hitam	Shorea maxwelliana
21108	Balau kuning	Shorea falcifera
21109	Balau laut	Shorea glauca
21110	Balau laut merah	Shorea kunstleri
21111	Balau membatu	Shorea guiso
21112	Balau membatu jantan	Shorea ochrophloia
21113	Balau merah	Shorea collina
21114	Balau pasir	Shorea materialis.
21115	Balau putih	Shorea lumutensis
21116	Balau sengkawang ayer	Shorea sumatrana
21117	Balau sengkawang darat	Shorea scrobiculata
21118	Balau tembaga	Shorea exelliptica
21201	Chengal	Neobalanocarpus heimii
21301	Giam	Hopea nutans (Giam)
21302	Giam bayan	Hopea pachycarpa
21303	Giam hantu	Hopea coriacea
21304	Giam jantan	Hopea semicuneata
21305	Giam kanching	Hopea subalata
21306	Giam lintah bukit	Hopea helferi
21307	Giam malut	Hopea ferrea
21308	Giam melukut	Hopea apiculata
21309	Giam palong	Hopea pierre
21310	Giam rambai	Hopea polyalthioides
21401	Resak	Cotylelobium spp. \& Vatica spp
21402	Resak bukit	Cotylelobium malayanum
21403	Resak tempurong	Cotylelobium melanoxylon
21404	Resak buah kana	Vatica ridleyana
21406	Resak daun runcing	Vatica cuspidata
21407	Resak degong	Vatica havilandii
21408	Resak gajah	Vatica sp. 'A.'
21409	Resak gunong	Vatica heteroptera
21410	Resak julong	Vatica mangachapoi
21411	Resak kecil	Vatica pallida
21412	Resak keluang	Vatica belia
21413	Resak langgong	Vatica scortechinii
21414	Resak laru	Vatica pauciflora
21415	Resak laut	Vatica cinerea
21416	Resak letop	Vatica venulosa
21417	Resak lidi	Vatica maingayi
21418	Resak mempening	Vatica stapfiana
21419	Resak padi	Vatica flavida
21420	Resak paya	Vatica lobata

\square

FINAL PROJECT REPORT PRESENTED TO THE INTERNATIONAL TROPICAL TIMBER ORGANISATION (ITTO)

PROJECT PD 10/87 (F)
FOREST MANAGEMENT OF NATURAL FOREST IN MALAYSIA

Table of contents

page
Executive Summary ii
I. Introduction 1
II. Objectives 2
III. Background and Justification 2
IV. Expected Project Outputs 4
V. Project Implementation
a) Selection of Study Areas 5
b) Technical Working Group 5
c) Physical achievement 8
d) Data analysis 8
e) Preliminary Results 11
f) Financial achievement 26
VI. Discussions 34
VII. Recommendations and Conclusions 36
List of AppendicesA: Procedure for establishment ofstudy area in virgin forest
B: Procedure for establishment of study area in logged-over forest
C: Processing of forest research data - procedure for data entry
D: A manual for the editing, maintenance and tabulation of enumeration data
E: Suggestion for enhancement of the field enumeration
F: Manual of instructions for enumerating the permanent ITTO experimental plots

EXECUTIVE SUMMARY

The project entitled "Forest Management of Natural Forest in Malaysia" was the first ITTO project implemented by Malaysia. This project which was approved by the Third Session of the ITTC held in Yokohama, Japan in November, 1987 became operational in August, 1988 and was completed in December, 1993.

The project had been successfully implemented with its major outputs achieved. This project which aims to study the response of residual stand under various management regimes in two (2) virgin forest areas and the regeneration capacity of dipterocarp forest under various silvicultural treaments in two (2) logged-over forest areas had resulted in the establishment of four (4) study areas, one each in the states of Pahang, Perak, Selangor and Terengganu. A total of 32 and 20 permanent sample plots of size $100 \mathrm{mx} \mathrm{100m}$ (1 hectare) each were established in the virgin and logged-over forest areas respectively. All these permanent sample plots had been enumerated ranging from one to four times.

In the course of the project implementation, the project had encountered a number of problems and identified various deficiencies which need to be addressed in order to ensure the future usefulness and effectiveness of the project. In addition, the project has also strengthened the collaboration among the various forestry institutions which are involved in the project implementation.

In this report, only preliminary results are presented. The reasons being at the point of report preparation, not all data collected from the four (4) study areas have been entered into the computer and the need for these data to be verified and edited before they are ready for analysis.

Due to the long-term nature of this kind of project, a longer time frame would be required before definite trends in the development and recovery of the forest could be demonstrated. In view that the results of this project would not only benefit the forestry sector in Malaysia, but also other ITTO member countries having similar forest conditions towards achieving ITTO Objective Year 2000 of sustainable tropical forest management, it is recommended that this project be extended to Phase II.

I. INTRODUCTION

In November, 1987, Malaysia submitted a project proposal entitled "Forest Management of Natural Forest in Malaysia" for consideration and funding by the International Tropical Timber Organisation (ITTO). The project which was proposed under the Reforestation and Forest Management Programme was subsequently approved by the Third Session of the International Tropical Timber Council (ITTC) held in Yokohama, Japan from 11-20 November, 1987 for immediate implementation and financing with conditions/recommendations that certain amendments be made to the Project Document. The Session also agreed that the project should commence at the beginning of 1988.

Pursuant to the recommendations by the Permanent Committee on Reforestation and Forest Management, members from the Forestry Department Headquarters, Peninsular Malaysia; Forest Research Institute, Malaysia; and the Forestry Faculty, University of Agriculture, Malaysia met at the Ministry of Primary Industries, Malaysia on 9 January, 1988 to discuss the necessary amendments to be made to the Project Document. Another meeting was held on 23 January, 1988 to discuss in detail the contents of the Agreement Document between Malaysia and ITTO. The revised version of the Project and Agreement Documents were resubmitted to ITTO by the Ministry of Primary Industries, Malaysia on 11 February, 1988.

On 8 August, 1988, the Government of Malaysia and ITTO signed the Project and Agreement Documents in Kuala Lumpur, Malaysia. The total ITTO's contribution to the project was US $\$ 272,353$ with US $\$ 25,000$ being earmarked for the purpose of project monitoring and review by ITTO for the first three (3) years of the project while Malaysia's contribution was estimated at US\$322,795 to be spread over a period of ten (10) years.

In addition, during the Eleventh ITTC Session which was held from 28 November to 4 December, 1991 in Yokohama, Japan, ITTO had approved the extension of the activities of the project until December, 1993 and an additional budget of US\$ 180,000 was allocated to carry out the following activities:-
(i) engage an international consultant to develop a data management system to ensure the analysis of data collected under the project (US\$ 30,000); and
(ii) conduct an international seminar to disseminate the project results (US\$ 150,000).

As at the end of project implementation, only funding for activity (i) had been received and the activity was undertaken from April to July, 1993. Funding for activity (ii) was not made available.

II. OBJECTIVE

(a) Development Objective

To develop appropriate forest management systems so as to optimize the management objectives of equitable returns to both logger and forest owner; sustainability of the tropical rain forest and minimum forest development cost consistent with the need to safeguard environmental quality and ecological balance; and to take advantage of the tropical timber markets.
(b) Immediate Objective

The immediate objectives are fourfold which are as follows:-
i) to examine in detail the distribution of natural regeneration and the response of residual stand under various management (felling) regimes in two (2) virgin forest areas;
ii) to increase the understanding of the regeneration capacity of the dipterocarp forest under various silvicultural treatments in two (2) logged-over forest areas;
iii) to conduct comprehensive study in the establishment of forest plantation of indigenous tree species; and
iv) to contribute to the formulation and implementation of sound silvicultural forest management systems for the dipterocarp forest in Peninsular Malaysia.

III. BACKGROUND AND JUSTIFICATION

The tropical rain forest of Malaysia is one the most complex ecosystems in the world. It is a unique natural heritage which has evolved over millions of years, and is rich and varied in plant and animal life. There are over 8,000 species of flowering plants of which 2,500 are tree species; well over 200 species of mammals; 600 species of birds; about 110 species of snakes; 80 species of lizards and thousands of species of insects.

The tropical rain forest is not only a vast reservoir of untapped natural resources but more importantly an essential life support system. It has been an integral and vital part of the environment and an important source of food, fuel and materials for satisfying the basic needs of the people since time immemorial. In recent years, tropical forest resources have contributed significantly to the socio-economic development of many countries. Consequently there is a growing awareness of the importance and need to manage these forest resources sustainably.

In Malaysia, systematic forest management had been practised since the beginning of this century when the first Forest Officer was appointed in 1901. The earlier silvicultural forest maniagement systems were primarily concerned with improving the existing timber crop for future production. Very few timber species were harvested and trees were felled selectively according to the requirements of good forest management, such as the removal of over-mature trees and trees that might compete with the favoured species.

With growing market for tropical hardwoods and a corresponding growth in sawmilling operations after Second World War, the Malayan Uniform System (MUS) was formulated. The MUS consists of removing the mature crop in one single felling of all trees down to 45 cm diameter at breast height (dbh) for all species and releasing the selected natural regeneration of varying ages which are mainly the light demanding medium and light hardwood species. This felling operation is followed by climber cutting and poison girdling of defective relics and non-commercial species down to a minimum dbh of 15 cm . Approximately 5 to 7 years after felling a linear strip sampling is carried out to verify the presence of sufficient regeneration on the ground and subsequently to determine suitable silvicultural treatments. This system has been succesfully applied to the lowland dipterocarp forest but has been found to be unsuitable in the hill dipterocarp forest because of the comparatively more difficult terrain, uneven stocking and the sparse natural regeneration. Furthermore, the risk of erosion on steep slopes and the incidence of Bertam (Eugeissona triste) and secondary growth could be increased by such a drastic opening of the canopy.

One of the major shifts in emphasis with respect to the management of the Malaysian tropical rain forest is the realisation that the diversity of our flora and timber species need not necessarily be disadvantageous to future wood production policies and strategies of the nation. On the contrary a mixed forest crop offers the best cover for soil and water conservation and the wood-based industry should be able to utilize a wider spectrum of timber species in the future. Technological innovations and sophistications in wood processing coupled with the changing pattern of wood use in the forestry sector will render a lot of presently uncommercial timber species merchantable in the future, both in the domestic and export markets. Consequently, the concept of Selective Management System (SMS) was introduced in 1972 to allow for more flexible timber harvesting regimes which are consistent with the need to safeguard the environment and at the same time to take advantage of the demands of the timber market. More importantly, it discourages the poison girdling of a lot of presently uncommercial species which will not only conserve the wood but also the genetic resources available in the forest, both for the present and future generations.

Under the SMS, a pre-felling forest inventory is carried out to provide reliable estimates of the population parameters which are needed to formulate the optimum management regime. Tentatively, minimum cutting limits of at least 45 cm dbh for the non-dipterocarps and 50 cm dbh for the dipterocarp species have been advocated for an average forest. The cutting limits selected for a particular forest should ideally ensure a net economic outturn and leave a residual stocking equivalent to at least 32 trees per hectare of trees having diameter 30 cm dbh and above, which could grow into commercial size for the next cut. The conservational forest management approach adopted in Malaysia under the SMS is expected to have the following beneficial effects:-
(i) conserve the dwindling forest resource;
(ii) ensure sustainability of the resource base;
(iii) preserve environmental quality;
(iv) reduce excessive damage;
(v) reduce excessive wastage; and
(vi) induce optimal utilization.

To further investigate the possibility of relying on advanced growth to produce the next crop as is advocated under the SMS, the first of a series of Growth and Yield experiments to study the economic and silvicultural implications of using various logging intensities and cutting regimes was established in about 150 hectares of hill forest in the State of Terengganu in 1974. Since then, many more such study areas were established in the states of Kelantan, Pahang, Johor and Negeri Sembilan to study and quantify the effects of different intensities of logging in hill dipterocarp forests on:-
(i) the timber and volume outturn under different intensities of logging;
(ii) the different parameters describing the growth of trees and stands;
(iii) the early growth responses of trees and stands under different logging intensities; and
(iv) the development of some functional relationships between growth parameters and logging intensities.

All these studies were conducted in initial virgin forests and that all the plots under various logging intensities are not subjected to any silvicultural treatments after initiation of the study. Hence this project is viewed as an extension of the projects currently being undertaken by the Forestry Department Peninsular Malaysia to include both the virgin and logged-over forests as well as to study the effects of silvicultural treatments on the growth of the residual stand.

IV. EXPECTED PROJECT OUTPUTS

The following outputs are envisaged from the project:-
(i) establishment of an information (data) - base on the growth potential of two (2) virgin forest areas under various intensities of logging and the response of two (2) logged-over forest areas under different types of silvicultural treatments;
(ii) formulation of suitable/optimum silvicultural forest management systems based on the intrinsic differences of species composition, soil and topography and variation in growth rates, so as to achieve sustained timber production especially in the Hill Dipterocarp Forest;
(iii) trained local expertise in formulating appropriate management (felling) regimes in virgin forest areas and in implementing suitable silvicultural treatments in logged-over forest areas;
(iv) complementing the global efforts to conserve and improve the world's tropical forest resources and environment; and
(v) the establishment of four permanent study sites with subplots under different management regimes. These sites will also serve as demonstration, training, and research areas that will not only cater to Malaysia, but also to other ITTO member countries.

V. PROJECT IMPLEMENTATION

(a) Selection of Study Areas

A total of four (4) study areas; namely two (2) virgin forest areas and two (2) logged-over forest areas were selected for the project. The two (2) virgin forest areas are located in the States of Pahang and Selangor while the two (2) loggedover forest areas are located in the States of Perak and Terengganu. The locations of the four (4) study areas are as shown in Figures 1 and 2. As requested by ITTO, all the four (4) study areas had been approved by the respective State Gavernments to be set aside for the purpose of this project for a duration of at least ten (10) years at the following dates:-

Study Area

1. Compartments $171 \& 172$, Lesong Forest Reserve, Pahang.
2. Compartment 50 , Sungai Lalang Forest Reserve, Selangor.
3. Compartment 39, Cherul Forest Reserve, Terengganu.
4. Compartments 194 \& 205, Kledang Saiong Forest Reserve, Perak.

(b) Technical Working Group

In order to facilitate the implementation of the project, a Technical Working Group on Forest Management of Natural Forest in Malaysia (TWG) comprising members from the Forestry Department Headquarters, Peninsular Malaysia; Forest Research Institute, Malaysia; Forestry Faculty, University of Agriculture, Malaysia; ASEAN Institute of Forest Management; and representatives from the State Forestry Departments of Pahang, Perak, Selangor and Terengganu where the study areas are located was formed and had its first meeting on 2 December, 1987. Meetings of the TWG were found to be most useful in the project implementation, right from project formulation to implementation where all practical and technical decisions were made by the TWG. In total, 13 TWG meetings were held with the last meeting being held at the State Forestry Department, Perak on 19 August, 1993. As was the tradition of the TWG meeting, members of the TWG visited the ITTO project study area located at Compartments 194 and 205, Kledang Saiong Forest Reserve prior to the meeting on 18 August, 1993.

Figure 1: Location Map of Study Areas in Peninsular Malaysia

Figure 2: Detailed Location Map of Study Areas by States

VIRGIN FOREST AREA
Compartment $171 \& 172$
Lesong Forest Reserve
Pahang
1:126,720

VIRGIN FOREST AREA
Compartment 50
Sungai Lalang Forest Reserve
Selangor
1:126,720


```
    LOGGED - OVER FOREST AREA
    Compartment 194 \& 205
Kledang Saiong Forest Reserve
                                    Perak
                                    1:126,720
```


LOGGED - OVER FOREST AREA Compartment 39
Cherul Forest Reserve
Terengganu
1:126,720

(c) Physical Achievement

The implementation of this project was based on the establishment procedures for the virgin and logged-over forest areas which were formulated by the TWG (Appendices A and B), as well as based on the Work Plan as outlined in ANNEX I of the project document. Under the Work Plan, a number of activities were scheduled to be carried out so as to achieve the intended outputs of the projects. In general, the project had been implemented successfully and according to schedule. The physical achievements of the project implementation for the virgin forest areas and logged-over forest areas are summarised in Tables 1 and 2 respectively.

(d) Data Analysis

Through the project implementation, it was realised that the successful implementation of the project would entail the development of a data management system so as to ensure timely analysis of the data already collected under the project. In view of the complex nature of this project, it was felt that an international consultant should be engaged to undertake the task.

Hence a formal request was forwarded to the Eleventh Session of the ITTC and Ninth Session of the Permanent Committees to engage an international consultant for the task. The said Session which was held in Yokohama from 28 November to 4 December, 1991 approved the immediate release of an additional finance of US $\$ 30,000$ soonest as it is being made available. The earmarked funding was made available during the Twelfth Session of the ITTC held in Yaounde, Cameroon from 6 - 14 May, 1992. Subsequently, Dr. Svend Korsgaard was engaged for the job for a duration of 3 months from 5 April to 4 July, 1993.

The consultancy had been successfully conducted with the following outputs achieved and documents produced:-
(i) Processing of forest research data: procedure for data entry (Appendix C);
(ii) A manual for the editing, maintenance and tabulation of enumeration data (Appendix D);
(iii) Suggestion for enhancement of the field enumeration (Appendix E); and
(iv) Manual of instructions for enumerating the permanent ITTO experimental plots (Appendix F).

Table 1 : Physical Achievement of Project Implementation in the two Virgin Forest Areas

Item	Activities	Date Completed	
		Pahang	Selangor
1.	Conduct Pre-Felling Forest Inventory (10\%)	May, 1988	December, 1988
2.	Analysis of Pre-Felling forest inventory data by block	October, 1988	March, 1989
3.	Demarcation of forest area on the ground by block	June, 1989	May, 1989
4.	Tree marking for all trees to be felled based on prescribed cutting limits	June, 1989	September, 1989
5.	Felling of marked trees	June, 1990	August, 1991
6.	Setting up of 32 permanent sample plots	December, 1990	December, 1991
7.	Marking and tagging of sample trees (1st measurement)	July, 1991	February, 1992
8.	Selection of indigeous tree species and the establishment of plantation plots	March, 1989	November, 1991
9.	Refililing of seedling in plantation	August, 1991	-
10.	Carry out 2nd measurement	March, 1992	March, 1993
11.	Carry out 3rd measurement	February, 1993	-
12.	Carry out 4th measurement	December, 1993	-

Table 2: Physical Achievement of Project Implementation in the two Logged-over Forest Areas

Item	Activities	Date Completed	
		Perak	Terengganu
1.	Conduct Post-Felling Forest Inventory (10\%)	August, 1988	January, 1989
2.	Analysis of post-felling inventory data by block	May, 1989	February, 1990
3.	Stratification of study area into various basal area classes	May, 1989	February, 1990
4.	Demarcation of study areas into 20 blocks based on prescribed basal area classes	December, 1989	April, 1990
5.	Application of prescribed silvicultural treatments		
	(i) Girdling and climber cutting (GCL)	December, 1989	December, 1990
	(ii) Climber cutting (CL)	December, 1989	March, 1991
	(iii) Girdling and climber cutting and enrichment planting (GCL \& EP)	March, 1990	December, 1990
	(iv) Plantation plots (PL)	June, 1992	June, 1990
6.	Establishment of 20 1-hectare permanent sample plots and conduct 1st measurement		
	(i) GCL plots	March, 1990	August, 1992
	(ii) CL plots	March, 1990	August, 1992
	(iii) EN plots	March, 1990	August, 1992
	(iv) PL piots	December, 1990	August, 1992
7.	Carry out 2nd measurement	September, 1991	August, 1993
8.	Carry out 3rd measurement	September, 1992	-
9.	Carry out 4th measurement	September, 1993	-

e) Preliminary Results

It is impossible at this juncture to present in detail the project findings. This is because not all data collected from the various study areas had been entered into the computer. Furthermore, all these data need to be verified and edited before they are ready for analysis. Hence only preliminary results of selected areas based on the immediate objectives of the project are described below:-
(i) species composition and the distribution of natural regeneration and the response of residual stand under various management regimes.

The species composition of the two (2) virgin forest areas by major species groups prior to forest harvesting based on the results of pre-felling forest inventory data for Pahang and Selangor are as shown in Tables 3 and 4 respectively. Results of the studies indicated the predominance of the nondipterocarp species which comprises 88 percent of the species composition. Detailed information on species composition for both study areas by blocks (32 of them) and species are also available and are currently being kept at Forest Management Unit, Forestry Department Headquarters, Peninsular Malaysia.

Both study areas were later subjected to harvesting based on the recommended management regimes (treatments). A total of eight (8) treatments were applied which are as follows:-

Treatment

Cutting Limit

01 Cut all trees $\geq 30 \mathrm{~cm}$ diameter at breast height (dbh);
02 Cut all trees $\geq 45 \mathrm{~cm} \mathrm{dbh}$;
03 Cut all dipterocarps $\geq 35 \mathrm{~cm} \mathrm{dbh}$ and non-dipterocarps $\geq 30 \mathrm{~cm}$ dbh;

04 Cut all dipterocarps $\geq 50 \mathrm{~cm}$ dbh and non-dipterocarps $\geq 45 \mathrm{~cm}$ dbh;

05 Cut all dipterocarps $\geq 65 \mathrm{~cm} \mathrm{dbh}$ and non-dipterocarps $\geq 60 \mathrm{~cm}$ dbh;

06 Cut all dipterocarps $\geq 75 \mathrm{~cm}$ dbh and non-dipterocarps $\geq 70 \mathrm{~cm}$ dbh;

07 Establishment of indigenous forest plantation (cut all trees ≥ 30 cm dbh); and

08 Control (no cutting).

Table 3: Species Composition by Major Species Groups and Diameter Class for the Virgin Forest Area in Pahang

Table 4: Species Composition by Major Species Groups and Diameter Class for the Virgin Forest Area in Selangor

Immediately after harvesting, 32 permanent sample plots (PSPs) measuring 100 m by 100 m (1 hectare) each were established in each study area to monitor the growth performance of the residual stand. The status of the forest immediately after harvesting by treatments is best reflected by graphical presentations (profile based on basal area) of the two (2) study areas based on enumeration data. Graphical presentations for the study areas in Pahang and Selangor based on the results of the second enumerations by treatments are as shown in Figures 3 and 4, respectively. The profile indicated clearly the effects of treatments on the residual stand. Examples of tabular presentation of results on mean number of trees, mean basal area and mean volume per hectare by diameter class for a selected treatment in the study area in Selangor are attached as Tables 5, 6 and 7, respectively.
(ii) Regeneration capacity of the dipterocarp forest under various silvicultural treatments in two logged-over forest areas.

The two logged-over forest areas are being subjected to the following silvicultural treatments:-
(i) Cutting of Liana (CL);
(ii) Girdling of trees and Cutting of Liana (GCL);
(iii) Girdling of trees and Cutting of Liana coupled with Enrichment Planting (GCL \& EP);
(iv) Establishment of indigenous forest plantation; and
(v) Control (no treatment).

At this juncture, only data collected from the logged-over study area in the State of Perak had been partially analysed. The species composition of the study area by major species groups prior to the setting-up of this study based on the postfelling forest inventory is as shown in Table 8. Results of the inventory indicates the predominance of the non-dipterocarp species group which comprises about 82 percent of the species composition.
H.S. LESDNG Cpt. 171 Treatment 01 : CUT ALL $)=30 \mathrm{~cm}$

POREST PROPILE:LETM TO1.92,4,0Na
H.S. LESDNG Cpt. 171

Tmt 03 : CUT DIPT) $35 \mathrm{~cm} / \mathrm{N}$. DIPT) $=30 \mathrm{~cm}$

FOREST PROPILE:LETMT03.921,4Ohe
H.S. LESONG CpI. 171 Treatment 02 : CUT ALL $\mathbf{>}=45 \mathrm{~cm}$.

FOREST PROPILE : LETMTO2.921,40ha
H.S. LESONG Cpt. 171

Tmt 04 : CUT DIPTY $=50 \mathrm{~cm} / \mathrm{N}$. DIPT $)=45 \mathrm{~cm}$

POREST PROPILE : LETMTO4.921Anha
H.S. LESONG Cpt. 171

Tmt 05 : CUT DIPT) $\mathbf{6 5} \mathrm{cm} / \mathrm{N}$. DIPT $)=60 \mathrm{~cm}$

FOREST PROPIER: LETM POF.921AOMG
H.S. LESONG Cpt. 171 Tmt 08: NO LOGGING, VIRGIN CONTROL

FOREST FROPILR : LETMTME.921,4.0Ma
H.S. LESONG Cpt. 171

Tmt 06 : CUT DIPT) $75 \mathrm{~cm} /$ N.DIPTF 70 cm

POREBT FROPILE: LETMTOC.921,A.Sha
H.S. SG. LALANG Cpt. 50 Treatment 01 : CUT ALL $>30 \mathrm{~cm}$

POREST PROPILE : SLTM TOI.981,40ha
H.S. SG. LALANG Cpt. 50

Tmt 03 : CUT DIPT $)=35 \mathrm{~cm} / \mathrm{N}$. DIPT $)=30 \mathrm{~cm}$

POREST PROPILE : SLTMTOS.931.4.Cha
H.S. SG. LALANG Cpt. 50.

Treatment 02 : CUT ALL $\rangle=45 \mathrm{~cm}$.

POREST PROPILR: SLTM T02931,40h
H.S. SG. LALANG Cpt. 50 Tmt 04 : CUT DIPT $\rangle=50 \mathrm{~cm} / \mathrm{N}$. DIPT $\rangle=45 \mathrm{~cm}$

FORBST PROPILE: SLIM T04.981;A.0ha
H.S. SG.LALANG Cpt. 50 Tmt 05 : CUT DIPT) $=65 \mathrm{~cm} /$ N.DIPT) -60 cm

POREST PROPILE : SIFM T08.93LA.Oka
H.S. SG. LALANG Cpt. 50 Tm 08 : NO LOGGING, VIRGIN CONTROL.

H.S. SG. LALANG Cpt. 50 Tmt 06 : CUT DIPTY $75 \mathrm{~cm} / \mathrm{N}$. DIPT $) 70 \mathrm{~cm}$

POREST PROPILR: SLTM TOS.9SL.4EhG

Table 5: \quad Sample Computer Output of Data Analysis, Mean Number of Trees per Hectare

tay oepartment h.q. /ilio, kuala lunpur
05.931 ENUNERATED: 1993, SUNGEI LALANG F.R., SELANGOR TRHT. O5 : CUT DIPT $\rangle=65 /$ NOH-DIP. $)=60$ CH
$\mathrm{K}: \quad 4,8,18,31$

ST CLASS $=$ AlL CLASSES
IDERTITY CLASS $=111$
CIES LISt : No checks made
\& VARIABLE NOT USEO
MEAN NUMBER OF TREES PER HECTARE
otameter classes in centimetres

10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	TOTAL	PER-
-14.9	-19.9	-24.9	-29.9	-34.3	-39.9	-44.9	-49.9	-54.9	-59.9	+		CEAT

HOOD QUALITY

OUP	1	2.78	. 25	1.00	1.00	. 25		. 25					5.53	1.88
OUP	2		. 75	1.25	. 75	. 25	. 25	. 50	. 25	. 25			4.25	1.44
QUP	3	15.97	10.25	6.50	4.50	3.00	. 75	1.00	. 50	. 50	.25	. 25	43.47	14.71
OUP	4		. 50	. 75	1.00	. 50	. 50	. 75		. 50			1.50	.1.53
JUP	5	.69	.25	. 25	. 25		. 50				. 25		2.19	.75
IUP	6	38.89	16.50	10.75	10.25	5.50	5.50	3.50	2.00	1.25	. 50		94.64	32.16
IUP	1	61.81	19.00	15.25	13.50	650	3.50	2.75	2.50	. 50	. 25	. 50	125.06	42.83
UP	8	10.42	2.00		. 25	. 50	. 25		. 25				13.67	4.64
	HA.	130.56	49.50	35.75	31.50	16.50	11.25	8.75	5.50	3.00	1:25	. 75	294.31	100.00
CE		44.36	16.82	12.15	10.70	5.61	3.82	2.97	1.87	1.02	. 42	. 25	100.00	
	PLOT	188.	198.	143.	126.	66.	45.	35.	22.	12.	5.	3.	843.	

Table 6: Sample Computer Output of Data Analysis,

 Mean Basal Area per Hectare
Progran Ittabsto

STAMOTABLE****
OATE : 11/08/1994
forestry departhent h.q. /ITTO, kuala lunpur

SLTMTO5.931 ENUMERATED: 1993, SUNGEI LALANG F.R., SELANGOR TRMT. O5: CUT OIPT $=65 /$ MON-DIP. $=$ OKO CM
8LOCK : 4, 8, 18, 31
FOREST CLASS $=$ ALL CLASSES
STEH IDENTITY CLASS $=111$

SPECIES LIST : NO CHECKS MADE
PAGE VARIABLE NOT USED NO. OF QUADRATS: 100, AREA: 4.00 HA.

MEAN BASAL AREA PER HECTARE (SQUARE NETRES)
dianeter classes in centinetres
$\begin{array}{lllllllllll}10.0 & 15.0 & 20.0 & 25.0 & 30.0 & 35.0 & 40.0 & 45.0 & 50.0 & 55.0 & 60.0 \\ \text { TOTAL PER- }\end{array}$ $-14.9-19.9-24.9-29.9-34.9-39.9-14.9-49.9-54.9-59.9+\quad$ CENT

WOOO QUALITY

group	1	. 03	. 01	. 04	. 06	. 02		. 04					. 19	1.58
group	2		. 02	. 05	. 04	. 02	. 02	. 07	. 04	. 05			. 32	2.69
group	3	. 19	. 25	. 25	. 28	. 25	. 08	. 14	. 08	. 10	. 07	. 08	1.78	14.81
Group	4		. 01	. 02	. 06	. 04	.05	. 11		.11			. 41	3.10
group	5	. 01	. 01	. 01	. 02		. 06				. 07		. 17	1.10
GROUP	6	. 47	.10	. 42	. 59	.46	. 60	.47	. 35	. 21	. 13		4.15	34.78
group	1	. 69	. 47	. 60	. 79	. 54	. 38	. 38	.44	. 11	. 07	. 18	4.63	38.80
Group	8	. 13	. 05		. 01	. 04	. 03		. 04				. 30	2.48
TOTAL P	HA.	1.51	1.21	1.40	$1.84{ }^{\circ}$	1.37	1.23	1.21	. 95	. 63	.33	. 26	11.94	100.00
PER CEN		12.65	0.11	11.71	15.13	11.18	10.30	10.11	1.98	5.28	2.78	2.18	100.00	

Table 7: Sample Computer Output of Data Analysis, Mean Volume per Hectare

gran Ittabsto

```
****STANOTABLE****
    DATE : 11/08/1994
```

estry departhekt h.l. /litto, kuala luhpur

ock : 4, 8, 18, 31
REST CLASS $\quad=$ ALL CLASSES
EM IOERTITY CLASS = 111

PECIES LIST : NO CHECKS MADE
lge variable not used
ho. of quadrats: loo. hren : 4.00 ha .
mean volume per hectare (cubic metres)
diameter classes in centiaetres

10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	total	PER-
-14.9	-19.9	-24.9	. 29.9	-34.9	-39.9	-44.9	-49.9	-54.9	-59.9	+		CENT

WOOD QUALITY

GROUP	1	. 14	. 03	. 22	. 37	. 16		. 33		,			1.24	1.46
group	2		. 12	. 31	. 27	. 17	. 19	. 64	. 37	. 46			2.53	2.96
GROUP	3	. 76	1.37	1.54	1.96	1.92	. 68	1.16	. 74	. 96	. 65	. 81	12.60	14.78
GROUP	4		. 06	. 14	. 41	. 32	. 43	. 96		1.01			3.32	3.90
GROUP	5	. 03	. 03	. 06	. 10		. 49				. 69		1.40	1.64
GROUP	6	1.93	2.23	2.57	3.99	3.45	4.89	4.00	3.18	2.54	1.28		30.06	35.26
sRoup	1	2.72	2.58	3.66	5.40	4.08	3.09	3.33	3.97	. 99	. 66	1.85	32.33	37.92
group	8	. 52	. 26		. 09	. 27	. 25		. 40				1.78	2.09
COTAL	R HA.	6.10	6.68	8.50	12.59	10.38	10.02	10.42	8.65	5.96	3.21	2.69	85.26	100.00
ER C		7.16	1.84	9.97	14.71	12.17	11.76	12.22	10.15	6.99	3.84	3.15	100.00	

Table 8: \quad Species Composition by Major Species Groups and Diameter Class for the Logged-over Forest Area in Perak

SPECIES GROUP		DIAMETER CLASS				
		+15-30	+30-45	+45-60	+60	+15
GROUP I	a.	2.58	1.89	1.12	0.73	6.32
Dipterocarp	b.	6.42	1.33	4.37	5.12	17.24
Meranti	c.	0.97	0.34	0.73	0.60	2.64
GROUP II	a.	0.49	0.22	0.16	0.16	1.03
Dipterocarp	b.	0.08	0.16	0.19	1.59	2.02
Non-merantl (Light-hardwoods)	c.	0.04	0.04	0.05	0.18	0.31
GROUP III	a.	0.32	0.30	0.24	0.08	0.94
Dipterocarp	b.	0.06	0.21	0.27	0.34	0.88
Non-meranti	c.	0.04	0.05	0.07	0.04	0.20
(Medium-hardwoods)						
GROUP IV	a.	2.13	1.36	0.83	0.42	4.74
Dipterocarp	b.	0.33	0.95	0.91	2.30	4.49
Non-meranti (Heavy-hardwoods)	c.	0.17	0.24	0.23	0.28	0.92
GROUP V	a.	6.78	3.96	1.59	0.62	12.95
Non-Dipterocarp	b.	22.90	2.76	1.86	2.06	29.58
(Light-hardwoods)	c.	3.32	0.71	0.47	0.29	4.79
GROUP VI	a.	1.12	0.77	0.38	0.38	2.65
Non-Dipterocarp	b.	0.16	0.55	0.43	1.46	2.60
(Medium-hardwoods)	c.	0.08	0.15	0.11	0.19	0.53
GROUP VII	a.	0.35	0.52	0.47	0.16	1.50
Non-Dipterocarp	b.	0.06	0.36	0.55	$0.65{ }^{\circ}$	1.62
(Heavy-hardwoods)	c.	0.02	0.10	0.14	0.08	0.34
GROUP VIII	a.	25.48	10.74	5.05	1.17	42.98
Non-Dipterocarp	b.	17.38	7.35	5.68	6.21	36.62
(Partially Marketable)	c.	3.71	1.89	1.46	0.82	7.88
GROUP IX	a.	0.03	0.04	0.02	0.02	0.11
Podo and Agathis	b.	0.01	0.03	0.02	0.05	0.11
Species	c.	0.00	0.01	0.00	0.01	0.02
DIPTEROCARP	a.	5.53	3.77	2.34	1.39	13.03
	b.	6.89	2.64	${ }^{5} 5.75$	9.35	24.63
	c.	1.21	0.68	1.08	1.10	4.07
NON DIPTEROCARP						
	a.	33.75	16.03	7.52	2.88	60.18
	b.	40.50	11.06	8.53	10.43	70.52
	c.	7.15	2.84	2.19	1.39	13.57
TOTAL (All species)	a.	39.28	19.80	9.86	4.27	73.21
	b.	47.39	13.70	14.28	19.78	95.15
	c.	8.36	3.52	3.27	2.49	17.64

a: No. of tree per hectare.
b: Gross volume per hectare.
c: Basal area per hectare.

Preliminary analysis of the data indicated that silvicultural treatments enhance growth performance. This is reflected by the higher growth rates attained by trees with treatments as compared to that of control as shown in Table 9.

Table 9: Basal area increment ($\mathrm{m}^{2} / \mathrm{ha} / \mathrm{yr}$) of trees 10 cm dbh and above by treatments for logged-over forest area located at Perak after establishment

Year	Year 1 $(\mathrm{m2} / \mathrm{ha})$	Year 2 $(\mathrm{m} 2 / \mathrm{ha})$	Year 3 $(\mathrm{m} 2 / \mathrm{ha})$	Mean Annual Increment
CL	19.72	20.67	21.50	0.59
GCL	17.98	19.68	20.08	0.70
GCL + EP	19.41	20.18	21.06	0.55
Control	17.87	17.75	18.75	0.13

As indicated in Table 9, mean annual basal area increment was highest in the GCL plots ($0.70 \mathrm{~m} 2 / \mathrm{ha} / \mathrm{yr}$) followed by CL plots ($0.59 \mathrm{~m} 2 / \mathrm{ha} / \mathrm{yr}$), GCL \& EP plots $(0.55 \mathrm{~m} 2 / \mathrm{ha} / \mathrm{yr})$ while the Control plots recorded the lowest increment of $0.13 \mathrm{~m} 2 / \mathrm{ha} / \mathrm{yr}$.
(iii) Establishment of forest plantation of indigenous tree species.

The aim of this component of the study is to find out suitable indigenous tree species that could be used in forest plantation establishment. In this connection, four plantation plots were established in each study area. The species to be planted were based on prior information that these species are locally occurring to ensure some kind of species-site matching. In addition, the species must be of commercial species. In all, a total of 7 species were planted. The distribution of species planted by study areas are as shown below:-

Study Area
Pahang

Species planted
Heritiera spp.
Shorea pauciflora
Shorea parvifolia
Dipterocarpus cornutus
Shorea acuminata
Shorea leprosula

Selangor	Shorea parvifolia Shorea acuminata
Perak	Shorea leprosula Shorea parvifolia
Terengganu	Shorea parvifolia Dipterocarpus baudii

The planting distance for the indigenous plantation is $3 \mathrm{~m} \times 6 \mathrm{~m}$ allowing a maximum total of 561 seedlings to be planted. Prior to the planting of seedlings, all residual trees having 30 cm dbh and above within the permanent sample plots were cut and removed from the planting line. All seedlings planted were enumerated during remeasurement. For the initial measurement when the seedlings are less than 5 cm in diameter, only total height is being measured. However, once the seedlings have achieved 5 cm diameter and greater, only diameter measurement will be taken. In addition, the total height of 30 dominant saplings, selected based on the tallest height recorded, for each species planted will also be measured.

Treatment and refiling are carried out at prescribed intervals with the recommended rate of survival being at least 80 percent.

Based on latest measurement undertaken, the survival percent of the seedlings planted for three of the study areas are as shown in Table 10. Current results indicated that most plots have achieved the recommended survival rate. However, efforts are on-going to refill dead seedlings for plots that are below the recommended survival rate.
(iv) Formulation and implementation of sound silvicultural forest manage ment systems.

This project aims to contribute to the formulation and implementation of the above-mentioned system. However, at this point of time, due to the long-term nature of this kind of study, many more years are needed before definite trends in the development and recovery of the forest could be demonstrated.

Table 10: Survival Percent of trees under the plantation plots

Study Area	Permanent Sample Plot No.	Total no. of trees planted	Total no. of trees survived	Survival percent
1. Compartment 171 \& 172, Lesong Forest Reserve, Pahang	15	541	460	85.0
2. Compartment 50, Sungai Lalang Forest Reserve, Selangor	16	537	440	81.9
13	23	371	240	64.7
3. Compartment 194 \& 205,				
Kledang Saiong Forest Reserve	14	527	429	81.4
Perak				

(f) Financial Achievement

In order to enable ITTO to transfer funds for the project to the Government of Malaysia, a Trust Fund Account with account code 84405 was set up within the Accountant General's Office, Malaysia. As at the end of project implementation, the Malaysian Government had received all the contributions from ITTO totaling US\$277,353 including US\$ 30,000 as additional funding for the engagement of an international consultant.

The first ITTO's installment of US\$14,390 was received on 24 November, 1990 while the second, third and fourth installments of US\$102,017, US\$60,793 and US\$70,153 were received on 26 June, 1989; 8 June, 1990; and 24 September, 1991 respectively. The last installment of US\$ 30,000 was received on 7 April, 1993. As at the end of project implementation (31 December, 1993), a total of US $\$ 277,310.57$ was spent in implementing the various activities of the project leaving a balance of US\$ 42.43. Details on the financial contributions and expenditures are as shown in Table 11.

Table 11: Financial Contribution and Expenditure
 (US\$)

(Exchange rate: US\$1 $=\mathrm{M} \$ 2.5068$)

* Expenditure as of 31 December, 1993.
** Include additional funding of US $\$ 30,000$ for the engagement of consultant but exclude US $\$ 25,000$ allocated for the monitoring and review of the project by 1 ITTO.

Besides the ITTO's contributions, the Malaysian Government has also spent a total of US $\$ 374,803.35$ in the form of imputed costs which include, among others, salaries of personnel involved in the project, cost of seedlings and inventory equipment, the maintenance of vehicles and the preparation of progress reports.

Hence, the accumulated expenditure for the project as of 31 December, 1993 was estimated at US $\$ 652,113.92$.

As required both by the Malaysian Government and ITTO, the project's expenditures were subjected to annual auditing by the Office of the AuditorGeneral. The audited annual accounts for the period 1988-1993 are as shown in Tables 12-17 respectively.

Table 12: TRUST ACCOUNT FOR THE PROJECT ON EOREST MANAGEMENT OF NATURAL FOREST IN MALAYSIA UNDER THE SPONSORSHIP OF THE INTERNATIONAL

RECEIPTS

Contribution from ITTO
(US \$14,390.00
@ M\$ 2.6460

TROPICAL TIMBER ORGANIZATION (ITTO) AND THE GOVERNMENT OF MALAYSIA

> STATEMENT OF RECEIPTS AND PAYMEMNS FOR THE YEAR ENDED $31 S T . ~ D E C E M B E R ~ 1988$ (KOD 84405)
$\$$ PAYMENTS

38,075.94

Travelling and overtime payments to staff of Forestry Department Peninsular Malaysia

Balance as at 31.12.1988
38,075.94
=======

$$
12,918.31
$$

\qquad

$$
25,157.63
$$

$$
38,075.94
$$

$$
\begin{aligned}
& 38,075.94 \\
& ======
\end{aligned}
$$

Executive Acounting Officer
Forestry Department Peninsular Malaysia
Kuala Lumpur
(DATO' OTHMAN B. ABD. MANAN)
Deputy Director-General of Forestry Peninsular Malaysia
Kuala Lumpur

TELAH DIPERIKSA

(Bahasin Persekutuan)
b.p. Ketua Andit Negara

Maiaysia

Table 13: TRUST ACCOUNT FOR THE PROJECT ON FOREST MANAGEMENT OF NATURAL FOREST IN MALAYSIA UNDER THE SPONSORSHIP OF THE INTERNATIONAL TROPICAL TIMBER ORGANIZATION (ITTO) AND THE GOVERNMENT OF MALAYSIA.

STATEMENT OF RECEIPTS AND PAYMENTS FOR THE YEAR ENDED

 31ST. DECEMBER 1989 (KOD 84405)

E LUNG)
Executive Acounting Officer
Forestry Department Peninsular Malaysia Kuala Lumpur
(DATO' OTHMAN B. ABD. MANAN)
Deputy Director-General of Forestry Peninsular Malaysia
Kuala Lumpur.

STATEMENT OF RECEIPTS AND PAYMENTS FOR THE YEAR ENDED 31ST. DECEMBER 1990 (KOD 84405)

TELAH DIPERIKSA

Table 15: TRUST ACCOUNT FOR THE PRCJECT ON EOREST MANAGEMENT OF NATURAI EOREST IN MALIYSIA UNDER THE SPONSORSHIP OF THE INTERNATIONAL TROPICAL.TIMBER ORGANIZATION. (ITRO) AND THE GOVERNMENT OE MALAYSIA

STATEMENT OE RECEIPTS AND PAYMENTS FOR THE YEAR ENDED 31ST DECEMBER 1991 (KOD 84405)

Table 16: TRUST ACCOUNT FOR THE PROJECT ON FOREST MANAGEMENT OF NATURAL FOREST IN MALAYSIA UNDER THE SPONSORSHIP OF THE INTERNATIONAL TROPICAL TIMBER ORGANIZATION (ITTO)

AND THE GOVERNMENT OF MALAYSIA

STATEMENT OF RECEIPTS AND PAYMENTS FOR THE YEAR ENDED 31ST DECEMBER 1992 (KOD 84405)

Receipts	M\$	Payments	M\$
Balance as at 1.1.92	99,568.82	Travelling and overtime payments to staff of Forestry Department Peninsular Malaysia	$71,646.80$
		Cost incurred in the establishment of indigenous forest plantation	20,000.00
		Other payments	271.75
		Balance as at 31.12.1992	7,650.27
	99,568.82		99,568.82
Mq			
(IRENE LUNG)		(Dato' Othman b. Abd. Manan)	
Assistant Accountant		Deputy Director-General of Forestry	
Forestry Department Peninsular Malaysia, Kuala Lumpur.		Peninsular Malaysia, Kuala Lumpur.	

Table 17: AKAUN AMANAH BAGI PROJEK "PENGURUSAN HUTAN KE ATAS HUTAN. ASLI DI MALAYSIA " TAJAAN INTERNATIONAL TROPICAL TIMBER ORGANIZATION (ITTO) DAN KERAJAAN MALAYSIA

PENYATA TERIMAAN DAN BAYARAN BAGI TAHUN BERAKHIR 31 DISEMBER 1993 (KOD 84405)

TERIMAAN	$\underline{\mathrm{RM}}$	BAYARAN	RM
Baki wang pada 1.1.93	7,650.27	Perbelanjaan perjalanan kakitangan Jabatan -Perhutanan Semenanjung Malaysia (Lampiran A)	9,370.00
Peruntukan dari ITTO	76,890.00		
USD 30,000 @ 2.5630		Bayaran juruperunding	75,000.00
		Lain-lain Perbelanjaan (Lampiran A)	63.90
		Baki wang pada 31.12.1993	106.37
	84,540.27		34,540.27
(IRENE LUNG)		(SHEIKH IBRAHIM B. SHEIKH ALI)	
Penolong Akauntan		Timbalan Ketua Pengarah Perhutanan,	
Ibu Pejabat Perhutanan		(Operasi Hutan)	
Kuala Lumpur.		Ibu Pejabat Perhutanan,	
		Kuala Lumpur.	

VI. DISCUSSIONS

The long-term goal of natural forest management is to ensure the multiple functions of the forests including the sustained supply of logs to the forest industry while maintaining the integrity of the forest resource. In support of the production goal, substantial information on the growth and yield potential of the forest under different cutting regimes and silvicultural treatments are required. These information are needed in order to select forest harvesting regimes that are best suited to the different forest types as well as the best silvicultural treatments that would enhance the growth potential of the residual stand.

Compared to the amount of funding from ITTO, contributions from Malaysia both in terms of the number of study areas and in kind has been tremendous. Though this was the first ITTO project for Malaysia, Malaysia has ventured to undertake the study by her own, right from project design to implementation on the ground without any international inputs except at the final stage where an international consultant was engaged to design a data base management system. Instead of conducting the project over one study area, four sites covering different parts of Peninsular Malaysia were chosen. This is commendable and doubtlessly the Malaysians have benefited through this project both technically and administratively.

The implementation of this project had resulted in the establishment of four study areas each with a specified number of permanent sample plots. These study areas are subjected to remeasurement/enumeration at specified intervals. In this context, the study areas which are located in Pahang and Perak have been enumerated three times each while that in Selangor and Terengganu enumerated twice and once, respectively. Through out the project implementation, numerous challenges/problems were encountered and various deficiencies identified which are as follows:-
(i) study of this nature requires careful planning and scheduling, particularly for the two virgin forest areas that were harvested based on prescribed cutting regimes. A case in point was the study area in the state of Selangor where the harvesting was prolonged for a year due to the difficult terrain and rainy condition and the need to reharvest trees that are marked for felling but not felled;
(ii) the need for proper maintenance of study areas and the collection of quality data from the field. Three of the four study areas are located quite far inland where traveling by four wheel drive over long stretches of former logging roads are necessary. However, due to lack of use as well as the inherent high rainfall in the country, most of these roads are rather inaccessible rendering remeasurement work tough and tedious. This problem could contribute to low morale of field crews and affect the quality of field data collected. To ensure field data quality , there is a need to assign specific trained field crews to undertake the task of carrying out remeasurement work;
(iii) data entry, verification and analysis which are tedious and time consuming and requires skilled and trained personnel. In fact, this is one of the most crucial problems faced as without timely analysis, the usefulness of the project will be curtailed. Realising this setback, specialised training had been given to counterpart officers as well as research assistants in operating the computer programmes devised; and
(iv) better documentation of study areas especially in terms of pictorial presentation such as aerial photographs at relevant intervals. This documentation, in the long-term, would further contribute to the success of the project especially in assessing the successional development of the forest stands.

Despite the above setback, the project has been implemented successfully with its major outputs achieved as outlined in Section V(d). In addition, the project has also strengthened the collaboration among the various forestry institutions in Malaysia which are involved in project implementation, namely Forestry Department Headquarters, Peninsular malaysia; Forest Research Institute, Malaysia; ASEAN Institute of Forest Management; Faculty of Forestry, University of Agriculture, Malaysia; as well as the various State Forestry Departments where the study areas are located. In fact, the project had benefited tremendously from this collaboration as a total of 13 Technical Working Group meetings were held through out the project implementation to discuss all technical matters pertaining to project planning and implementation.

Besides, the Technical Working Group in recognition of the long-term research nature of the study has decided that the time horizon of the project should be extended from 10 years, as originally requested by ITTO to 50 years to ensure the permanency and security of the study areas. The request to extend the project period have been forwarded by the various State Forestry Departments to their respective State Governments for consideration.

Not withstanding the above, it must be acknowledged that study of this nature is invariably a complex one as it involves the monitoring of growth responses of trees and forests on different sites and subjected to different cutting regimes and silvicultural treatments and require a reasonable vast forest area. This is clearly reflected by the number of treatments and replications applied and the size of the study areas which ranges from 210 to 420 hectares. This is further confounded by the complex and heterogeneous nature of the tropical forest and their varying terrain conditions.

In this report, only preliminary results are presented. The reasons being at the point of report preparation, not all data collected have been entered into computer, verified and corrected. In addition, there is a need to further refine the computer programmes for growth parameter calculation. Hence the results presented here are at best indicative of the immediate response of the residual stand after treatment. More detailed data analysis will have to be undertaken.

The project also witnessed realistic budget proposal and the effective utilisation of project funds by the implementing agency. Sufficient funding was requested with all of them being fully utilised for project implementation.

VII. RECOMMENDATIONS AND CONCLUSIONS

Through project implementation, it has been found that the TWG has played a pivotal role in steering project implementation. Hence it is recommended that it should be made a permanent feature of all internationally funded projects. This TWG would ensure that project to be implemented are not only technically sound but capable of addressing current forestry needs in the country concerned.

The project also indicated various pertinent matters that should be given due consideration in order to ensure the ultimate success of the project. Hence it is recommended that every effort be taken to ensure:-
(i) the timely enumeration of all the four study areas on schedule;
(ii) timely analysis of all the data collected. This is pertinent as data entry, verification and analysis is a time consuming process and required skilled personnel. In this regard, tailored training programme should be carried out to provide incentives for the personnel involved to provide the necessary platform for continuity and advancement in data analysis;
(iii) proper documentation and presentation of project findings. This would enable information sharing and effective dissemination to interested parties ; and
(iv) the data management system developed should be fully operationalised.

At this point of time, it could be concluded that the project had been successfully implemented where the plots are correctly established and are being regularly enumerated according to predetermined schedule. The data collected are continuously being entered into computer, verified and edited to be analysed using computer programmes specifically designed for the studies. The immediate effects of logging and silvicultural treatments on the residual stands are also being studied and documented.

However, due to the long term nature of this kind of project, a longer timeframe would be required before definite trends in the development and in recovery of the forest could be demonstrated. In view that the results of the project would not only benefit the forestry sector in Malaysia, but also assist other ITTO member countries having similar forest conditions towards achieving ITTO Objective Year 2000 of sustainable tropical forest management, it is recommended that this project be extended to Phase II.

PROCEDURE FOR ESTABLISHMENT OF STUDY AREA IN VIRGIN FOREST

TABLE OF CONTENTS

Page----
1.0 INTRODUCTION 1
2.0 ESTABLISHMENT OF STUDY AREA 2
2.1 SELECTION OF STUDY AREA 2
2.2 PRE-FELLING FOREST INVENTORY 3
2.3 DETERMINATION OF CUTTING LIMITS 6
2.4 NUMBER AND PLOT SIZE 7
2.5 REPLICATION OF TREATMENTS AND STRATIFICATION OF STUDY AREA 8
3.0 RANDOMISATION OF TREATMENTS 14
4.0 BOUNDARY DEMARCATION, TREE MARKING AND 18 FOREST HARVESTING
5.0 ESTABLISHMENT AND REMEASUREMENT OF PERMANENT SAMPLE PLOT 19
6.0 DATA ANALYSIS 23
APPENDICES

APPENDIX I	TECHNICAL DECISIONS MADE DURING THE MEETINGS OF THE TECHNICAL	24
	WORKING GROUP ON FOREST MANAGEMENT OF NATURAL FOREST IN MALAYSIA	
APPENDIX II	LOCATION MAP OF STUDY AREAS UNDER THE JOINT MALAYSIA-ITTO PROJECT	29
APPENDIX III	PRE-FELLING FOREST INVENTORY FIELD SHEET	32
APPENDIX IV	LISTING OF SPECIES UNDER THE	
	VARIOUS SPECIES GROUPS	

APPENDIX V RANKING OF TREATMENT BLOCKS FOR 36 LESONG FOREST RESERVE, PAHANG.
APPENDIX VI RANKING OF TREATMENT BLOCKS FOR 39 SUNGAI LALANG FOREST RESERVE, SELANGOR.
APPENDIX VII TREE MARKING AND HARVESTING FORM 42
APPENDIX VIII TREE ENUMERATION FORMS 43

1.0 INTRODUCTION

In November, 1987, Malaysia submitted a project proposal entitled "Forest Management of Natural Forest in Malaysia" for consideration and possible funding by the International Tropical Timber Organisation (ITTO).

The Third Session of ITTO held in Yokohama, Japan 11 20 November, 1987 approved the project for immediate implementation and financing with conditions that certain amendments be made to the Project Document as recommended by the Permanent Committee on Reforestation and Forest Management.

The revised Project Document was then resubmitted to ITTO and subsequently, the Contract Agreement for the implementation of the project was signed between the Government of Malaysia and ITTO on 8 August, 1988 in Kuala Lumpur, Malaysia.

Under this project, a total of four (4) study areas were established with two (2) of the study areas being located in the virgin forest while the remaining two (2) in logged-over forest. The main objectives of this project are fourfold which are as follows:-
(i) to examine in detail the distribution of natural regeneration and the response of residual stand under various management (felling) regimes in two (2) virgin forest areas;
(ii) to increase the understanding of the regeneration capacity of the diptexocarp forest under various silvicultural treatments in two (2) logged-over forest areas;
(iii) to conduct comprehensive study in the establishment of forest plantation of indigenous tree species; and
(iv) to contribute to the formulation and implementation of sound silvicultural forest management systems for the dipterocarp forest in Peninsular Malaysia.

This paper documents the procedures used in the establishment of the two (2) study areas located in the virgin forest.

2.0 ESTABLISHMENT OF STUDY AREA

To facilitate the implementation of the project, a 'Technical Working Group on Forest Management of Natural Forest in Malaysia' was formed to formulate establishment procedures, plan as well as discuss and solve technical matters pertaining to the project. The Technical Working Group comprises members from the Forestry Department Headquarters, Peninsular Malaysia; Forest Research Institute, Malaysia; ASEAN Institute of Forest Management; Forestry Faculty, University of Agriculture, Malaysia and representatives from the State Forestry Departments of Pahang, Perak, Selangor and Terengganu where the study areas were located. The list of technical decisions made by the Technical Working Group in the course of project implementation appears as Appendix I while the establishment procedures of the two (2) study areas in the virgin forest as drawn up by the Technical Working Group are as follows:-

2.1 SELECTION OF STUDY AREA

In the selection of the two (2) virgin forest areas for this project, the following criteria were taken into consideration:-
(i) the area must be located in the Permanent Forest Estate;
(ii) the forest cover must be undisturbed, i.e. virgin forest;
(iii) access must be reasonable, location must be within 10 to 16 kilometers from an all weather major (public) road;
(iv) the State Government must provide formal agreement to set aside the study area to be maintained by the Forestry Department for a period of at least 10 years; and
(v) specifications for the fellings and extraction of logs required for this project must be in accordance with the specifications as stipulated in the Project Document and must be agreed upon between the state Forestry Department and the logging contractor.

Based on the above considerations, two (2) virgin forest areas were selected for this project which were as follows :-
(i) Compartments 171 and 172, Leang Forest Reserve, Pahang.
(ii) Compartment 50, Sungai Lalang Forest Reserve, Selangor.

Compartments 171 and 172, Lesong Forest Reserve are located in Rompin District at the South-Western part of Pahang, bordering the state of Johor within latitudes $103^{\circ} 7^{\prime} \mathrm{E}$ to $103^{\circ} 9^{\prime} \mathrm{E}$ and longitudes $2^{\circ} 40^{\circ} \mathrm{N}$ to $2^{\circ} 42^{\prime} \mathrm{N}$. The total area of the two (2) compartments amounts to 2,822 hectares. However, only 410 hectares are utilised for the study. The study area is disected by Sungai Lingit and ita many tributaries which flow in the North-West direction. The general topography of the study area, is gentle and undulating with elevation ranging from 75 m to 240 m 。

Compartment 50, Sungai Lalang Forest Reserve is located in the north-eastern part of Ulu Langat District bordering the state of Negeri Sembilan within latitudes $101^{\circ} 56^{\prime} \mathrm{E}$ to $101^{\circ} 58^{\prime} \mathrm{E}$ and longitudes $3^{\circ} 7^{\prime} \mathrm{N}$ to $3^{\circ} 9^{\circ} \mathrm{N}$. The compartment covers a total area of 603 hectares. However, only 420 hectares of the compartment is being utilised for the study. The general topography of the compartment is undulating to hilly with elevation ranging from 150 m to 1000 m above mean sea level. The locations of the two (2) study areas are as shown in Maps 1, 2 and 3 of Appendix II.

The two (2) study areas as mentioned-above was approved by the respective State Government to be set aside for the purpose of the project for a duration of at least ten (10) years as required by ITTO at the following dates.:-

Study area

(i) Compartments 171 and 172, 11 October, 1989 Lesong Forest Reserve, Pahang.
(ii) Compartment 50, 6 July, 1988 Sungai Lalang Forest Reserve, Selangor.

2.2 PRE-FELLING FOREST INVENTORY

Prior to the demarcation and stratification of the study area into various forest stocking classes and the prescription of cutting limits, a pre-felling forest inventory was carried out to determine the stocking and
structure of the forest. This inventory was carried out using systematic-line-plots of size $50 \mathrm{~m} \times 20 \mathrm{~m}$ with four (4) sub-plots of size $25 \mathrm{~m} \times 20 \mathrm{~m}, 10 \mathrm{~m} \mathrm{X} 10 \mathrm{~m}, 5 \mathrm{~m}$ X 5 m and $2 \mathrm{~m} \times 2 \mathrm{~m}$. The sampling lines were parallel to one another at 100 m apart with the $50 \mathrm{~m} \times 20 \mathrm{~m}$ principal plots being 50 m apart along each sampling line or 100 m from one plot centre to the next as shown in Figure 1.

Details of the principal plot and sub-plots, their areas and respective equivalent sampling intensities are as follows:-

Sample Plot
(i) 50 m X 20 m
(ii) $25 \mathrm{~m} \times 20 \mathrm{~m}$
(iii) $10 \mathrm{~m} \mathrm{X} \mathrm{10m}$
(iv) $5 \mathrm{~m} \times 5 \mathrm{~m}$
(v) $2 \mathrm{~m} \times 2 \mathrm{~m}$

Size Class Description

$>45 \mathrm{~cm}$ diameter at	Big trees
breast height (dbh)	Small trees

$>15 \mathrm{~cm}-30 \mathrm{~cm} \mathrm{dbh} \quad$ Big poles
$>5 \mathrm{~cm}-15 \mathrm{~cm} \mathrm{dbh}$ Small poles
$>1.5 \mathrm{~m}$ height (ht) Saplings
$-5 \mathrm{~cm} \mathrm{dbh}$
$15 \mathrm{~cm} h t-1.5 \mathrm{~m} h t$

Big trees
Small trees

Seedlings

Figure 1 : LAYOUT OF SAMPLE PLOTS PRE-FELLING FOREST INVENTORY

All trees within the size class corresponding to the selected sample plot were enumerated by species as far as possible while sample trees having a minimum diameter at breast height (dbh) of 5 cm were measured to the nearest one-tenth centimeter in diameter at 1.3 m or 0.3 m above buttress. In addition, the quality and number of logs were also being enumerated for each of the sample trees having 30 cm dbh and above while the presence of climbers intertwining sample trees of diameter greater than 15 cm were also being recorded together with their diameter measurements. The vigour and stem form for trees having diameter between $>5 \mathrm{~cm}$ to 15 cm were also enumerated while only the number of trees present were recorded for saplings having diameter less than 5 cm .

In addition to the above, the presence of rattans, bamboos, bertam (Eugeissona triste), palms and ferns were also being enumerated in the principal plot, together with other features such as slope, aspect, elevation, soil and forest types.

The forest inventory data were recorded in field sheet as shown in Appendix III. The inventory data were analysed and processed by computer which provided for each treatment block (which comprises a few pre-felling forest inventory sample plots) summaries of stand and stock tables showing gross and net number of trees per hectare; gross and net volume per hectare and basal area per hectare by species and/or species groups and by diameter classes and/or diameter limits.

The pre-felling forest inventory for the study area in Pahang was completed in May, 1988 while that for the study area located in selangor was completed in December, 1988.

2.3 DETERMINATION OF CUTTING LIMITS

In determinig the cutting limits to be prescribed over the study area, the following factors were taken into consideration:-
(i) the cutting limits prescribed must reflect the existing forest management system in the country. Under the Selective Management System (SMS) which is currently being practised in Peninsular Malaysia, a split cut for the dipterocarp and non-dipterocarp trees has been advocated with the dipterocarp trees being prescribed a higher cutting limit; and
(ii) the possibility of utilising smaller diameter logs in the future as well as the prospect of establishing indigenous forest plantation.
A total of eight (8) treatments as outlined in the
Project Document was agreed by the Technical Working
Group on Forest Management of Natural Forest in
Malaysia for implementation which were as follows:-
(i) cut all trees $\geq 30 \mathrm{~cm}$ diameter at breast height (dbh);
(ii) cut all trees $\geq 45 \mathrm{~cm}$ dbh;
(iii) cut all dipterocarps $\geq 35 \mathrm{~cm} \mathrm{dbh}$ and nondipterocarps $\geq 30 \mathrm{~cm}$ dbh;
(iv) cut all dipterocarps $\geq 50 \mathrm{~cm} \mathrm{dbh}$ and nondipterocarps $\geq 45 \mathrm{~cm} \mathrm{dbh}$;
(v) cut all dipterocarps $\geq 65 \mathrm{~cm}$ dbh and nondipterocarps $\geq 60 \mathrm{~cm} \mathrm{dbh}$;
(vi) cut all dipterocarps $\geq 75 \mathrm{~cm}$ dbh and nondipterocarps $\geq 70 \mathrm{~cm} \mathrm{dbh}$;
(vii) establishment of indigenous forest plantation; (cut all trees $\geq 30 \mathrm{~cm}$ dbh); and
(viii) control (no cutting).

For the purposes of meaningful statistical analysis, each treatment above was being replicated four (4) times based on stocking classes (the whole study area was being stratified into four (4) different stocking classes).

2.4 NUMBER AND PLOT SIZE

In order to fulfill the requirement of treatments and replications as specified in section 2.3 , a total of 32 permanent sample plots were established in each study area. Each permanet sample plot measured 100 m X 100 m (1 ha). It was considered necessary that each permanent sample plot be surrounded by a buffer zone receiving exactly the same treatment as that of the plot. A treatment block of 10 ha with the following dimensions was then recommended.

2.5 REPLICATION OF TREATMENTS AND STRATIFICATION OF STUDY AREA

It was considered essential and necessary that each treatment be replicated for meaningful statistical analysis. In this study, all the eight (8) treatments as mentioned in 2.3 were being replicated four (4) times.

For complete randomisation of each treatment in four (4) replications, homogeneity is required over practically the whole study area. However, this could not be achieved in the mixed tropical forests, which are heterogeneous in nature. Hence, a practical solution to this problem is to stratify the study area into four (4) classes of approximately homogeneous forest stocking (in terms of number of trees and gross volume per hectare by species and/or species groups and by diameter classes and/or diameter limits) and the locating of a full series of eight (8) treatments in each stocking class. It is then considered that each series of treatments is located in an area of approximately equal site conditions and growth potential. Any differences in actual growth detected in later stage analysis, could then be attributed to treatment differences within the series.

The stratification of the study area into four (4) different stocking classes was based on the analysis of the pre-felling forest inventory samples located in each treatment plot. Analysis of the inventory data and stratification of the study area in Pahang into four (4) different stocking classes was completed in October, 1988 while that in Selangor was completed in March, 1989. Figures 2 A and 2B show the distribution of pre-felling forest inventory sample plots within each treatment plot for the study areas at Lesong Forest Reserve, Pahang and Sungai Lalang Forest Reserve, Selangor respectively.

Pre-felling sample plot data were analysed, and summarized into treatment block averages using computer programme developed by the Forestry Department Headquarters, Kuala Lumpur which provided for each treatment blocks summary stand and stock tables (both cumulative and non-cumulative) showing:-

(i)	Gross number of trees) per hectare;	
)	
(ii)	Net number of trees per hectare;	by species and/ or species
)	groups and by
(iii)	Gross volume per hectare;)	diameter classes
	()	and/or diameter
(iv)	Net volume per hectare;	limits.
	()	
(v)	Basal area per hectare;)	

In the analysis, all trees were grouped into nine (9) species groups with group 1 - 4 being dipterocarps and group 5-9 being non-dipterocarps. A detailed listing of the various species under each species group is as shown in Appendix III while an adapted version of the Non-cumulative and Cumulative summary stand and stock tables for treatment block 01, Lesong Forest Reserve, Pahang are as shown in Tables 1 and 2 respectively.

From the summary stand and stock tables details for fifteen (15) variables were compiled and listed for each treatment block which were as follows:-

Variables of Treatment Block (volume/ha)

(i)	>15-30cm)	
(ii)	$>30-45 \mathrm{~cm}$)	Dipterocarps
(iii)	$>45-60 \mathrm{~cm}$)	
(iv)	$>60 \mathrm{~cm}$)	
(v)	$>15-30 \mathrm{~cm}$)	
(vi)	$>30-45 \mathrm{~cm}$)	Non-dipterocarps
(vii)	$>45-60 \mathrm{~cm}$)	
(viii)	$>60 \mathrm{~cm}$)	
(ix)	$>15-30 \mathrm{~cm}$)	
(x)	$>30-45 \mathrm{~cm}$)	
(xi)	$>45-60 \mathrm{~cm}$)	All species
(xii)	$>15 \mathrm{~cm}$)	
(xiii)	$>30 \mathrm{~cm}$)	
(xiv)	$>60 \mathrm{~cm}$)	
(xv)	Equivalent no. of trees/ha (for all trees $>15 \mathrm{~cm} \mathrm{dbh}$)*)	(No/ha)

* The calculation of equivalent number of trees for all trees above 15 cm dbh was based on the concept of SMS. Trees from the diameter class $>30-45 \mathrm{~cm}$ was taken as base and given an equivalent value of 1 while trees above 45 cm dbh was considered more superior and thus given a conservative equivalent value of 2 and trees from the diameter class $>15-30 \mathrm{~cm}$ were given an equivalent value of 1/3. For example, a treatment block contains 30 trees/ha from the diameter class $>15-30 \mathrm{~cm}$, 15 trees/ha from the diameter class $>30-45 \mathrm{~cm}$ and 8 trees/ha having diameter greater than 45 cm , the total equivalent number of trees/ha in the treatment block was calculated as follows:-

Scale 1: 13,000

LEGENO

\# Pre-felling samples

Figure 2A : Diatribution of pre Felling Samplea Within rreatment plots Lesong Forest Reserve, Pahang

Scale 1: 18.000

Fonising deramtitit meadquantehg malaysia
PRE－tEILING FOREGT INVEITORX．
egeno funest hanftue，palang
THFATHEITT BLOCK 1

		い！A：I		15	30	1.5	50	55	60	65	70	75	80	85	＞90	TOTA		
nfermis crur														00	2.22	27.		
Gurer	1	Glet； WKI	（1）．刀f Jtrios	15．5 5	5． 56	． 00	1.11	3.33 2.33	.00 .00	.00 .00	． 00	.00 .00	． 00	． 00	2.22 1.78	16.		
			mi）．Of rpata	7.78	3． 33	． 00	． 718	2.33 5.62	． 00	． 00	． 00	． 00	． 00	． 00	34.11	41.1		
			Groses wollit	1.02	3.07	． 00	1．48	5．6？	． 00	． 00	． 00	． 00	． 00	.00	23.88	31.1		
			HEJ VOIdAF．	1.09	$\cdots{ }^{3} 8$	． 05	8.	3． 86	． 00	． n	.00	． 00	． 00	． 00	2.62	4.1		
			R＇EAT，ATEA	． 56	.61	． 00	2.3	86		．								
GFill	？	$\begin{array}{r} \text { GOES ! } \\ \text { nET } \end{array}$				07	． 07	． 00	． 00	． 00	． 00	． 00	． 00	.00	． 00	.1		
				－10	． 00	． 00	． 00	． 00	． 00	.00	． 00	． 00	． 00	． 00	． 00	． 1		
			no．of treifis	． 00	． 00	． 00	． 00	． 00	.00	． 00	． 00	． 00	． 00	． 00	． 00	． 1		
			grosi volanie	． 00	． 00	． 00	．00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	1		
			HET VOJMME	． 00	． 00	． 00	． 00	． 00	． 00	.00	． 00	.00	.00	． 00	.00	． 1		
			FISA，AMEA	． 00	． 00	． 00	． 00	． 0										
groul	3	gnose HE．T				． 00	3.33	1.11	1.11	1.11	.00	． 00	1.11	． 00	1.11	11.1		
			no．OF TTBFS	2.22	． 00	． 00	3.33 2.33	． 1.78	． 89	． 89	． 00	． 00	． 89	． 00	． 89	7.1		
			IIO．of thelis	1． 11	． 00	． .00	1.191	1.77	3.32	3.63	． 00	． 00	7.95	． 00	10.39	32.4		
			citoss volurit	． 49	． 00	． 00	2.95	1.06	2.33	2.54	． 00	． 00	5.56	． 00	7.27	22．C		
			NET Vnlme	． 29	.00 .00	． 00	2.75 .76	． 21	2．34	． 37	.00	.00	． 61	． 00	． 80	－ 3.3		
			PASAL ARFA	． 15	． 00	． 00		． 27										
Grẹtr	${ }_{1}$	ghoss NFT			1.11	． 00	． 00	． 00	． 00	1.11	． 00	． 00	． 00	． 00	1.11	3． 3		
			HO．OF THFES	－10	1.11	． 00	． 00	． 00	． 00	． 89	． 00	． 00	． 00	.	． 69	2.4		
			No．of trrifis	． 00	． 67	． 00	． 00	． 00	． 00	3.76	． 00	． 00	． 00	． 00	12.63	17.1		
			grose vollire	． 00	－ 79	． 00	． 00	． 00	． 00	2.63	.00	． 00	． 00	． 00	0.84	11.9		
			NET VOIMPIE	－100	8	． 00	． 00	． 00	． 00	.39	． 00	． 00	.00	． 00	． 97	1.4		
			MSAI，AREA	． 00	． 12	． 00	． 0	． 0	． 0									
Groit	5	$\begin{gathered} \text { GROSS } \\ \text { MET } \end{gathered}$					． 00	1.11	． 00	． 00	． 00	． 00	． 00	． 00	． 00	26.6		
			HO．OF THFES	17.70	6.67	1.118	． 00	1．718	． 00	． 00	． 00	． 00	． 00	． 00	． 00	14.4		
			HO．OF TRPFS	8.09	4.00	1． 21	． 00	1.73	． 00	． 00	.00	． 00	． 00	． 00	． 00	9.8		
			ranoss volume	1.63	5.29	1.21	． 00	1.04	． 00	． 00	． 00	． 00	． 00	． 00	． 00	5．91		
			He＇t volunc	． 98	3.18	． 73	－10	1.07	． 10	． 00	． 00	.00	.00	． 00	.00	1.7		
			JASAL．ATEA	.50	． 81	． 19	．	． 2.1	，									
crixll	6	$\begin{array}{r} \text { IROSS } \\ \text { NeT } \end{array}$				O0	． 00	． 00	． 00	． 00	． 00	1.11	． 00	． 00	.00	3．3：		
			19．OF ThFFS	2．＇́2	． 00	． 00	． 00	． 00	． 00	． 00	.00	． 89	． 00	． 00	． 00	2.01		
			HO．OF TRL：FS	1.11	． 00	． 00	． 00	． 00	． 00	． 00	． 00	4.79	． 00	． 00	． 00	\＄．91		
			cnoss voldme	.10	． 00	． 00	． 00	． 00	． 00	． 00	． 00	3.35	． 00	． 00	． 00	3.41		
			NET VOIARE	． 1	． 00	． 00	． 00	． 00	． 0 O	． 00	.00	.49	.00	． 00	.00 ．	． 5 ！		
			Marial，ABEA	． 00	． 00	． 00	． 0	． 0	．									
gurip	γ	$\begin{array}{r} \text { riloris } \\ \text { ?ETT } \end{array}$						． 01$)$	1.11	1.11	． 00	.00	.00	.00	.00	2.24		
			10．OF This：	.00	． 09	． 00	．00	． 00	1．80	． 89	． 00	． 00	.00	.00	.00	1.71		
			10．OF TPFFS	． 00	． 00	－00	． 0 O	． 00	3.30	3.59	． 00	.00	． 00	． 00	． 00	6.91		
			groses volliltr	． 01	． 00	－no	－ 0	． 00	2.31	2.52	． 00	． 00	． 00	.00	． 00	4.8		
			Her volsmr．	． 00	． 90	． 00	nis	． 00	2．31	． 31	.00	． 00	.00	.00	． 00	．71		
			Manc．Ampa	.00	． 0	． 0	．${ }^{\text {a }}$	． 0	． 3									
（\％${ }^{\prime}$	4	$\begin{gathered} \text { ghuses } \\ \text { wr:r } \end{gathered}$								2.22	1.11	． 00	.00	． 00	． 00	183.3		
			（0）．Sf jRHIS：	133.39	31.11	10.00	2.22	J． 11	2．2． 18	2．82	． 1.19	.00	． 00	． 00	． 00	99.11		
			NO．¢F TFFFS	5，6．67	18.57	7．06	1.56	$\begin{array}{r}.78 \\ \hline .97\end{array}$	1．78	1.72	4．39	． 00	． 00	． 00	． 00	12.03		
			Gracs voluhte	15.20	22.34	11． 26	3.11	1.97 1.18	4.58	5.06	3.07	． 00	． 00	． 00	． 00	45.03		
			HFT VOIHIE	4.3 ？	13．41	6.76	1.86	1.18 .30	．	． 74	． .15	． 00	.00	.00	.00	12.49		
			PACAT，ATPPA	4.69	3.44	1.73	． 48	． 30	．ri									
	0	$\begin{array}{r} \text { ruas } \\ \text { Mry } \end{array}$					09	． 00	． 00	． 00	． 00	.00	． 00	． 10	． 00	． 00		
				． 00	． 00	－ 0		． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00		
			Wo．刀F TimFt	． 00	－ 09	． $0^{\prime} 9$	－ 0	． 00	．ro	． 00	.00	． 00	． 00	． 00	． 00	． 00		
			choss volune	， 1 ）	． 00	． 00	－00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00	． 00		
			Het Vrillate	． 100	．00	． 00	． 00	． 00	． 00	.00	． 00	.00	． 00	.00	． 00	． 00		
			Misal hllen	． 0	，（1）	． 0	． 00	－										
Dutrenmenhe		rimoss mo．of TliFES chuss VoJJた屋 HET Villlle LA：CA！NBF：A					4． h_{1}	h．${ }^{\text {hli }}$	］． 11	2.22	． 00	． 00	1.11	.00	4.44	42.2		
		17.16	$6.6 i$	00	3．11	3.11	． 89	1.78	． 00	． 00	． 89	.00	3.56	26.22				
		P．R？	4.00	． 00	3．11．	3.11	3.32	7.39	． 00	． 00	7.95	． 00	57.13	96.65				
		2.31	4． 76	． 07	6.39	7.39 4.43	2.33	5.17	． 00	． 00	5.56	． 00	39.99	65.51				
		1．39	2.86	． 00	3.04 .98	1.14	2.315	． 76	． 00	.00	.61	.00	4.39	9.61				
Roll niftrmurant				． 71	． 73	． 00	． 9^{8}	1.14	． 3									
						2.22	3.33	3.33	1.11	1.11	． 00	． 00	． 00	215.56				
		CFiss 1	110．Of thrimb	153.33	31.18	11．118	2.22	1.56	2.67	2.67	． 89	． 89	． 00	． 00	． 00	117.33		
		HFPr	（10）（1）Trats	76.67	22.67	7．78	1.56	1.70	9.84	10.82	4.39	4.79	.00	． 00	． 00	93.76		
			gross votame	17.02	27.63	12．47	3.11	3.10 2.22	9.89	7.57	3.07	3.35	． 00	． 00	． 00	59．24		
			HETP voturie	10.21	16.58	7．48	1.66	2．22	1.01	1.11	． 1.5	． 49	.00	.00	． 00	15.51		
			IMSAM．AFriA	5.81	b．es	1.92	． 48	． 71	1.01	1.11								
Trand．											4．13／		1.11	1.11	1.11	． 00	4.44	257.78
		10．OF T7PFTS	171．11		4．4．410	11． 11.	6.67 4.67	4.67	3.56	4.44	． 99	． 89	． 89	． 00	3.56	143.56		
		HO．OF TTIF．S	35.56		25.67	1.70	4.61	11.09	13.16	18.21	4.39	4.79	T． 95	． 00	57.13	290.41		
		cmosis volurf	19.33		32.40	12.47 7.18	9.70 5.70	11．09	9.21	12.75	3.07	3.35	5.56	． 00	39.99	124.81		
		NFT volum	11.60		10．4月	1.18 1.02	5.70	6.65 1.71	1.35	1.87	． .15	． 49	． 61	． 00	4.39	25.18		
		PACm！，ATEA	5.95		1.98	1． 92	1．4）	1.71	1.35	1.87								

FUREGITY DEPARTVFRT HEADqUARTERS MALAYSIA.
PRE-FELITMG FOREST INVENTORY.
IESONO FOREST RESERVE, PALANG
treathent block 1.

TADIE 2 : CURQILATIVE SUNUARY STAND AMD STOCK TABLE.

Total equivalent number of trees/ha

```
=1/3 x (No. of trees >15-30cm) +
    1 x (No. of trees >30-45cm) +
    2 x (No. of trees greater than 45cm
= 1/3 x (30) + 1 x (15) + 2(8)
= 10 + 15 + 16
= 41 trees/ha
    ============
```

For each variable, all the treatment blocks were ranked accordingly, with treatment block having the lowest value (Volume/ha or No, of trees/ha) being assigned a rank number of 1 while that having the highest value being assigned a rank number of 32. Treatment blocks having the same value would be assigned equal rank number.

These rankings were carried out for all the fifteen (15) variables as mentioned-above and subsequently recompiled into nine (9) ranking lists for each treatment block as shown in Table 3.

From the nine (9) ranking lists the various blocks which fall in the lower uptill the higher one-quarter of the ranges of the nine (9) lists was determined. Borderline cases were decided individually.

Numerical examples of the full ranking procedures for the study areas at Lesong Forest Reserve, Pahang and Sungai Lalang Forest Reserve, Selangor are as shown in Appendices V and VI respectively.

3.0 RANDOMISATION OF TREATMENTS

For meaningful statistical analysis in later stage, the allocation of the various treatments within each stocking class was randomised. In this project all the treatments with the exceptions of indigenuous plantation establishment and control; the location of which were pre-determined to facilitate logging and planting were located within each of the four (4) stocking classes by drawing a random number. The pre-determined and randomised locations of the various treatments within the study area for both study areas at Lesong Forest Reserve, Pahang and Sungai Lalang Forest Reserve, Selangor are as shown in Figures $3 A$ and $3 B$ respectively.

```
\begin{tabular}{ll} 
Variables of Treatment & \begin{tabular}{l} 
Ranking of Treat- \\
Block (volume/ha)
\end{tabular} \\
& ment Blocks in \\
Study Area
\end{tabular}\(\quad\) Ranking Lists
```


Dipterocarps

(i) $D B H \quad 15-30 \mathrm{~cm}$	a	
(ii) $D B H ~ 30-45 \mathrm{~cm}$	b	
(iii)	DBH $45-60 \mathrm{~cm}$	c
(iv) $D B H ~$	60 cm	d

Total Scores $a+b+c+d$
(1) Total scores Dipterocarp

Non-Dipterocarps

(v) DBH $15-30 \mathrm{~cm}$	e	
(vi) DBH $30-45 \mathrm{~cm}$	f	
(vii) DBH $45-60 \mathrm{~cm}$	g	
(viii) DBH $>60 \mathrm{~cm}$	h	
Total Scores	a+b+c+d+e...th	(2) Total scores
		all species

All Species

(ix)	$15-30 \mathrm{~cm}$	i	(3)	Total score $15-30 \mathrm{~cm}$
(x)	$30-45 \mathrm{~cm}$	j	(4)	Total score
				$30-45 \mathrm{~cm}$
(xi)	45-60cm	k	(5)	Total score
				$45-60 \mathrm{~cm}$
(xii)	$>15 \mathrm{~cm}$	1	(6)	Total score
				$>15 \mathrm{~cm}$
(xiii)	>30 cm	m	(7)	Total score
				$>30 \mathrm{~cm}$
(xiv)	>60cm	n	(8)	Total score
				$>60 \mathrm{~cm}$
(xv)	Equivalent no. of trees	\bigcirc	(9)	Total score
	(no/ha)			all trees
				$>15 \mathrm{~cm} \mathrm{dbh}$

Scale 1: 18,000

Figure 3A: Allocation of Preatments within study Area Lesong Forest Reserve, Fahang

Figure 3B: Allocation of Treatments Within Study Area Sungai Lalang Forest Reserve

Selangor

4.0 BOUNDARY DEMARCATION, TREE MARKING AND FOREST HARVESTING

Prior to the marking of trees to be felled, boundary demarcation (1 meter wide) for all treatment blocks were carried out. Along the boundary, all trees below 10 cm dhb may be .cut while the four (4) corners of the treatment blocks were marked with 5 cm diameter PVC pickets. In addition, circumferences of tree below 30 cm dbh were painted yellow at breast height at a spacing of 10 meter along the boundary. Boundary demarcation and marking of all trees to be felled according to the cutting limits prescribed by blocks was completed in June, 1989 for the study area in Pahang while that for the study area in Selangor was completed in september, 1989.

All trees to be felled in each treatment blocks, as specified by the cutting limit, were located and marked as follows:-

- tree number (sequential per plot) was painted on metal tag at dbh level.
- tree number and the direction of felling (indicated by an arrow head) was painted at stump level.

Information for all trees to be felled in each treatment block were recorded using a tree marking and harvesting form as shown in Appendix VII. Before felling, only information on tree number, species name, species code, diameter at breast height were being recorded. Upon felling, the list was completed by entering for each tree the dimensions of logs bucked from the stem which were as follows:-
(i) total length of log;
(ii) large end diameter;
(iii) small end diameter;
(iv) length of log; and
(v) note and remarks if any.

Harvesting operations were carried out in all treatment blocks except the four (4) treatment blocks under control in accordance with the cutting limits prescribed. In Pahang, felling of marked trees in all blocks except the control blocks where no harvesting of trees was allowed commenced in July 1989 and was completed in June, 1990. Felling of all marked trees in Selangor commenced in midSeptember, 1989. However, it was only completed in August 1991 due to difficult terrains and the necessity to call for a tender to cut the remaining trees which were not felled during the first harvesting operation. During the harvesting operations, staff from the Forestry Departments were in attendance to supervise as well as record the dimension of the stems after felling.

5.0 ESTABLISHMENT AND REMEASUREMENT OF PERMANENT SAMPLE PLOT

Immediately after completion of all harvesting operations, a permanent sample plot measuring $100 \mathrm{~m} \times 100 \mathrm{~m}$ (1 ha) was laid out, as far as possible, in the centre of each treatment block. The design of the permanent sample plot is as shown in Figure 4.

Each permanent sample plot consists of twenty five (25) quadrats (sub-plots) of size $20 \mathrm{~m} \times 20 \mathrm{~m}$, nine (9) quadrats of size $5 \mathrm{~m} \times 5 \mathrm{~m}$ and nine (9) quadrats of size $2 \mathrm{~m} \times 2 \mathrm{~m}$.

The dimension of the various quadrats, quadrat number and the size classes of trees to be enumerated within each quadrat are as follows:-

Quadrat size	Quadrat number	Size class
$20 \mathrm{~m} \times 20 \mathrm{~m}$	$\begin{aligned} & 1,2,3,4,5, \\ & 6,15,16,25, \\ & 24,23,22,21, \\ & 20,11,10 \end{aligned}$	$>15 \mathrm{~cm}$ diameter
$20 \mathrm{~m} \times 20 \mathrm{~m}$	$\begin{aligned} & 7,8,9,12,13, \\ & 14,17,18,19 \end{aligned}$	$>5 \mathrm{~cm}$ diameter
$5 \mathrm{~m} \times 5 \mathrm{~m}$	$\begin{array}{llll} 26,27, & 28, & 29, & 30 \\ 31, & 32, & 33, & 34 \end{array}$	$>1.5 \mathrm{~m}$ height 5 cm diameter
$2 \mathrm{~m} \times 2 \mathrm{~m}$	$\begin{aligned} & 35,36,37,38,39, \\ & 40,41,42,43 \end{aligned}$	15 cm height - 1.5 m height

All trees above 5 cm dbh within each permanent sample plot were numbered with aluminium tag sequentially while number of seedlings 15 cm high till sapling of size 5 cm dbh were being counted. All trees within the size classes corresponding to the selected quadrats were enumerated to species level, as far as possible, while sample trees were measured to the nearest one-tenth of a centimeter in diameter and to the nearest centimeter in height. All diameters were measured at breast height (1.3m) or 0.3 m above buttress. A set of the enumeration forms corresponding to the size classes of trees to be enumerated is as shown in Appendix VIII.

In addition, four(4) permanent sample plots were established as plantation plots. The design of the plantation plot is as shown in Figure 5. Each plantation plot measures $120 \mathrm{~m} \times 120 \mathrm{~m}$ with 10 m on each side acting as buffer area. Each plot consists of 17 planting lines with the distance between planting lines being 6 m and between seedlings 3 m . A total of 561 seedlings were planted within

KEY:

O Yellow Painted Picket

- Red Painted Picket

Scale $1 \mathrm{~cm}: 6 \mathrm{~m}$

Figure 4: Design of Permanent Sample Plot

Buffer Zone
Planting Line
Fermenent Sample Plot

Figure 5 : Layout of Permenent Sample Plot
for Plantation Forest Establistment.
each plot. Initially, only height measurements will be undertaken for all seedlings planted until they reach 5 cm diameter at breast height. Once this diameter size is achieved, only diameter measurements will be undertaken except for the 30 dominant saplings where their heights will continue to be monitored.

For all plots, a plot diagram showing the location as well as the number of trees within the quadrats was also being prepared to facilitate future remeasurement.

Demarcation and establishment of permanent sample plots of size 1 ha each, marking, tagging and first enumeration of sample trees within all plots were completed in March, 1990 for the study area in Pahang and in December, 1991 for the study area in Selangor. All these plots will be remeasured periodically to gather information on the growth and development of the residual stands after harvesting.

The permanent sample plots will be measured annually for the first five year of study; once in two years from the 7 th year until the 15 th year and there after once in five years. The schedule for remeasurement for the study areas located at Compartments 171 and 172, Lesong Forest Reserve, Pahang and Compartment 50, Sungai Lalang Forest Reserve, Selangor are as shown in Table 4 and Table 5 , respectively.

6.0 DATA ANALYSIS

Data collected from the study areas will be entered into computers and a data management system for the project will be developed through an ITTO consultancy. Computer programmes in FORTRAN will be written to analyse the various growth components under different treatments as advocated by the studies and the programmes so written will be documented.

```
Technical Decisions Made During The Meetings of the
Technical Working Group on Forest Management
                        of Natural Forest in Malaysia
```

1. Experimental design for the virgin and logged-over forest areas is the randomised block design.
2. The cutting limits (regimes) for the virgin forest areas are as follows:-
(a) Cut all trees having diameter $\geq 30 \mathrm{~cm}$ at breast height;
(b) Cut all trees having diameter $\geq 45 \mathrm{~cm}$ at breast height;
(c) Cut all dipterocarps and non-dipterocarps having diameter $\geq 35 \mathrm{~cm}$ and $\geq 30 \mathrm{~cm}$ at breast height respectively;
(d) Cut all dipterocarps and non-dipterocarps having diameter $\geq 50 \mathrm{~cm}$ and $\geq 45 \mathrm{~cm}$ at breast height respectively;
(e) Cut all dipterocarps and non-dipterocarps having diameter $\geq 65 \mathrm{~cm}$ and $\geq 60 \mathrm{~cm}$ at breast height respectively;
(f) Cut all dipterocarps and non-dipterocarps having diameter $\geq 75 \mathrm{~cm}$ and $\geq 70 \mathrm{~cm}$ at breast height respectively;
(g) Establishment of indigenous forest plantation (Cut all trees haging diameter $\geq 30 \mathrm{~cm}$ at breast height followed by planting of indigeneous tree species); and
(h) Control (no cutting).
3. For the logged-over forest area, the silvicultural treatments are as follows:-
(a) Cutting of Iiana (CI);
(b) Girdling of trees and cutting of liana (GCL);
(c) Girdling of trees and cutting of liana coupled with enrichment planting;
(d) Establishment of indigenous forest plantation; and
(e) Control (no treatment).
4. Pre-Felling and Post-Felling forest inventories to be carried out in the virgin and logged-over forest area respectively shall be of 10% intensity.
5. The size of the permanent sample plots to be established shall be $100 \mathrm{~m} \times 100 \mathrm{~m}$ (One hectare plot). The layout and design of the permenant sample plot (PSP) in the logged-over forest is the same as that in the virgin forest. However, a 10 m buffer zone surrounding the permanent sample plot which shall be subjected to the same treatment as the PSP is advocated for the logged-over forest.
6. The criteria for selecting species for the indigeneous forest plantation shall be as follows:-
(a) Dominant species found in the forest area; and
(b) Commercial species.

Based on the above criteria, the following plantation species were selected for the four (4) study areas:-
(i) Pahang
(a) Mengkulang (Heritiera spp.)
(b) Meranti Nemesu (Shorea pauciflora)
(c) Meranti Sarang Punai (Shorea parvifolia)
(d) Keruing Gombang (Dipterocarpus cornutus)
(e) Meranti Rambai Daun (Shorea acuminata)
(f) Meranti Tembaga (Shorea leprosula)
(ii) Selangor
(a) Meranti Sarang Punai (Shorea parvifolia)
(b) Meranti Rambai Daun (Shorea acuminata)
(iii) Perak
(a) Meranti Tembaga (Shorea leprosula)
(b) Meranti Sarang Punai (Shorea parvifolia)
(iv) Terengganu
(a) Meranti Sarang Punai (Shorea parvifolia)
(b) Keruing Bulu (Dipterocarpus baudii)
7. The planting distance for the indigeneous forest plantation is $3 \mathrm{~m} \times 6 \mathrm{~m}$ while that of enrichment planting is $3 \mathrm{~m} \times 10 \mathrm{~m}$.
8. Selection of tree species for enrichment planting is to be based on the dominance/availability of the species in the study area and in accordance with the 'Regeneration Sampling List'.
9. Enrichment planting need not be carried out at planting sites if there is already the presence of the desired species. However, if the trees found at the planting sites are not of the desired species, enrichment planting of the desired/selected species should be carried out at a distance of 1 meter to the right of the planting site. All planting lines are to be aligned in an East-west direction and be cleared of all under-growth at a distance of 0.5 m to the left and right of the line.
10. Priority is to be accorded to carry out enrichment planting in the Permenant sample plots (4 plots of 1 ha each) while the balance of the area (remaining 36 ha) shall be planted in stages depending on the availability of seedlings. It is decided that each. planting line is to be planted by a specific species.
11. Treatment and refilling schedule for enrichment planting and indigenous forest plantation is as follows:-

(i)	Treatment and refilling 1	: 3 months after planting
(ii)	Treatment and refilling 2	: 9 months after planting
(iii)	Treatment and refilling 3	: 15 months after planting
(iv)	Treatment and refilling 4	: 27 months after planting

Subsequently, treatment is to be carried out yearly during remeasurement until the 5th year. Acceptable survival rate of seedling is 80%.
12. The total number of seedlings to be planted in the permanent sample plot of size 120 m x 120 m (inclusive of the buffer zone) under plantation establishment shall be 800 comprising not more than four (4) species. Each planting line shall be planted with a single species alternating with lines planted with other species in a sequential manner.
13. Prior to the planting of seedlings under plantation establishment, all residual trees 30 cm dbh and above within the Permanent Sample plot ($120 \mathrm{~m} \times 120 \mathrm{~m}$) shall be cut and removed from the planting line.
14. A total of 480 seedlings comprising not more than 4 species shall be planted in the permanent sample plot ($120 \mathrm{~m} \times 120 \mathrm{~m}$) under enrichment planting. It is decided that each planting line shall be planted with a single species alternating with lines planted with other species in a sequential manner.
15. All seedlings planted under plantation establishment and enrichment planting will be enumerated during remeasurement. For the initial measurements when the seedlings are less than 5 cm dbh, only total height will be measured. However, once the seedlings have achieved 5 cm dbh and greater, only diameter measurement will be taken. In addition, the total height of 30 dominant saplings, selected based on the tallest height recorded, for each species planted will also be measured. In the event of death to a dominant sapling a year after measurement, it will be replaced by the next tallest sapling based on the latest height measurement before the sapling achieved 5 cm dbh. However, if the dominant sapling dies in subsequent years, it will be replaced by trees having the next biggest diameter measurement.
16. It was decided that for both plantation establishment and enrichment planting, only trees planted within the permanent sample plots will be enumerated during remeasurement. Tree planted within the buffer zone need not be enumerated.
17. A blanket silvicultural treatment of the virgin forest in the form of climber cutting (CL) shall be conducted 3 years and 10 years after harvesting in view of the findings that climbers are found to be most abundant during these periods.
18. Logging studies (harvesting cost) will be conducted over the whole study area. Average logging cost by treatment blocks will be obtained by proportioning the total logging costs incurred.
19. Assessment of stem and crown damage shall be conducted each time the remesurement is being carried out and preferrably by a specially trained and assigned team of crew.
20. The logged-over forest at Kledang Saiong Forest Reserve, Perak is to be divided into four (4) different residual basal area (BA) classes. The four (4) BA classes and the corresponding blocks for each BA class are as follows:-

BA Class

(a) $\quad 7-9 \mathrm{~m}^{2} / \mathrm{ha}$
(b) $\quad>9-11 \mathrm{~m}^{2} / \mathrm{ha}$
(c) $>11-13 \mathrm{~m}^{2} / \mathrm{ha}$
(d) $>13-15 \mathrm{~m}^{2} / \mathrm{ha}$

Block No.

4, 8, 12, 18, 19
5, 6, 13, 14, 15
$2,3,16,17,20$
1, 7, 9, 10, 11
21. The logged-over forest at Cherul Forest Reserve, Terengganu is to be divided into four (4) different residual basal area (BA) classes. The four BA classes and the corresponding blocks for each $B A$ class are as follows:-

BA Class.

Block No.

| (a) | $7.5-9.5 \mathrm{~m}^{2} / \mathrm{ha}$ | $16,04,09,10,11$ |
| :--- | ---: | :--- | :--- | :--- |
| (b) | $11.5-13.5 \mathrm{~m}^{2} / \mathrm{ha}$ | $19,14,08,12,02$ |
| (c) $>13.5-15.5 \mathrm{~m}^{2} / \mathrm{ha}$ | $03,13,15,20,17$ | |
| (d) $>15.5-17.5 \mathrm{~m}^{2} / \mathrm{ha}$ | $05,07,18,01,06$ | |

22. It was decided that all trees marked for felling within the permanent sample plot (1 ha) are to be felled while at least 90% of all marked trees within the remaining treatment block (9 ha) for all treatment types should also be felled. Trees which pose danger to be felled shall be poison-girdled by using GARLON 250 (3, 5, 6 - Trichloro - 2 pyridyloxyacetic acid). Marked trees which are not felled should be recorded.
23. It was decided that the $2 \mathrm{~m} x 2 \mathrm{~m}$ quadrats will enumerate seedlings and saplings of size 15 cm height - 150 cm height instead of the earlier decision of size 15 mm height - 150 cm height.
24. The parameters that shall be taken into account during the analysis of data are as follows:-
(a) Diameter increment;
(b) Basal area increment;
(c) Volume increment;
(d) Ingrowth;
(e) Mortality rate;
(f) Crown and stem damage;
(g) Road construction costs; and
(h) Harvesting cost.

LOCATION MAP OF STUDY AREAS UNDER THE JOINT MALAYSIA - ITTO PROJECT
 Map 1

VIRGIN FOREST AREA
Compartments $171 \& 172$
Lesong Forest Reserve
Pahang
1:63,360

Map 3

VIRGIN FOREST AREA
Compartment 50
Sungai Lalang Forest Reserve
Selangor
1: 63,360

APPENDIX IV

Listing of Species Under the Various Species Groups

A. DIPTEROCARPS

Species Group	Vernacular Name	Botantcal Equivalents
1	Dark Red Meranti	Shorea spp.
	Light Red Meranti	Shorea spp.
	White Meranti	Shorea mpp.
	Yellow Meranti	Shorea spp.
	Meranti Melantal	Shorea mpp.
2	Mersawa	Anisoptera spp.
	Merawan	Hopea spp.
	Gerutu	Parashorea spp.
3	Keruing	Dipterocarpus spp.
	Kapur	Dryobalanops aromatica
	Keladan	Dryobalanops oblongifolia
4	Balau	Shorea spp.
	Red Balau	Shorea app.
	Chengal	Neobalanocarpus heimil
	Giam	Hopea spp.
	Regak	Cotylelobium spp. and
		Vatica spp.

B. NON-DIPTEROCARPS

Species Group	Vernacular Name	Botanical Equivalenta
5	Bengang	Neesia spp.
(All Light	Bintangor	Calophyllum spp.
Hardwoods)	Durian	Durio app.
(Fully Marketable)	Geronggang	Cratoxylum spp.
	Jangkang	Xylopia spp.
	Jelutong	Dyera costulata
	Kedondong	Family of Burseraceae
		Canarium spp., Dacryodes spp., Santirla spp.,
		Triomma malaccensis and
		Scutinanthe brunnea
	Kembang semangkok	Scaphium spp.
	Keredas	Pithecellobium bubalinum
	Kungkur	Pithelellobium splendens
	Machang	Mangifera spp.
	Ramin	Gonystylus spp .
	Mempisang	Annonaceae spp.

RANKING of treatment blocks for
DIPTEROCARP AND NON-DIPTEROCARP,
LESONG FOREST RESERVE, PAHANG

RANKING LIST FOR TREATMENT BLOCKS, LESONG FOREST RESERVE, PAIIANG

Lise	High \longrightarrow Ranking DE Block Identities \longrightarrow Lou			
Sum scores Dipeerocarps	1, 2, 31, 23, 7, 32, 25, 17	$4,16,24,6,12,30,29,18$	10, 3, 26, 27, 14, 15, 5, 28	$9,19,12,8,22,20,21.13$
Sum scores all species	32, 2, 6, 23, 1, 18, 31, 4	17, 24, 7, 5, 3, 16, 10, 11	27, 14, 30, 29, 20, 9, 28, 12	25, 26, 13, 8, 15, 19, 22, 21
$15-30 \mathrm{~cm}$	$31,8,23,3,2,32,10,28$	5, 29, 1, 18, 6, 20, 30, 14	9, 4, 11, 25, 19, 27, 13, 7	$\frac{17}{22}, 21,25,15,12,24,16$
30-45cm	17, 32, 7, 23, 6, 4, 24, 3	1, 5, 2, 10, 16, 30, 11, 9	$20,13,10,29,8,27,14,31$	$22,25,19,15,26,28,12,$
$45-60 \mathrm{~cm}$	32, 24, 4, 1, 6, 31, 12, 18	7, 27, 15, 10, 13, 11, 22, 2	$20,3,17,5,30,14,15,9$	8, 23, 28, 25, 29, 25, 19, 21
-15cm	2, 20, 5, 31, 6, 16, 14, 24	7, 27, 23, 12, 32, 9, 17, 1	18, 4, 29, 28, 3, 30, 15, 11	$10,13,25,26,8,22.19,21$
-30cm	$2,20,5,31,6,16,14,24$	$7,27,12,23,9,17,32,1$	18, 4, 29, 28, 15, 30, 3, 11	$25,13,26,10,22,8,19,21$
-60cm	$2,20,5,31,14,15,6,12$	$27,9,23,7,29,28,24,17$	15, 18, 25, 1, 26, 30, 32, 4	11, 3, 13, 10, 19, 22, 3,21
Equivalene No. of erees	$2,4,32,6,31,5,1,20$	24, 18, 7, 3, 10, 17, 11, 23	27, 29, 8, 16, 14, 28, 13, 9	12, 30, 26, 15, 22, 19, 25, 21

Stocking Strata	Superior	Good	Hoderate	Poar
Block Itanctites	31, 6, 2, 32, 1, 23, 24, 5	4, 20, 7, 17, 18, 16, 11, 10	14, 15, 27, 28, 29, 30, 3, 9,	12, 13, 8, 26, 25, 19, 22, 21
Replicactons	Eeplicacion 1	Replication 2	Replication 3	Replicarion 4

RANKING OF TREATMENT BLOCKS FOR DIPTEROCARP AND NON-DIPTEROCARP, SUNGAI LALANG FOREST RESERVE, SELANGOR

RANKING LIST FOR TREATMENT BLOCKS, SUNGAI LALANG FOREST RESERVE, SELANGOR

Lise	$\mathrm{High} \longleftrightarrow$ Ranking of Block Identities $\longrightarrow \longrightarrow$ Low			
Sum scores Diperacarps	$\underset{20}{23}, 22,24,7,8,14,11,$	4, 6, 16, 3, 2, 9, 27, 30	$\frac{19,1,28,32,26,25,29, ~}{12}$	5, 21, 17, 31, 10, 15, 18, 13
Sum scores all species	24, 20, 8, 9, 16, 23, 28, 27	19, 22, 3, 14, 7, 30, 11, 18	17, 2, 32, 25, 4, 29, 31, 26	21, 12, 1, 15, 10, 5, 6, 13
15-30cm	$20,24,28,17,9,3,8,29$	16, 2, 4, 10, 22, 19, 27, 23	30, 18, 5, 26, 7, 11, 32, 14	$1,21,25,6,12,31,15,13$
30-45cm	9, 19, $20,27,32,8,31,24$	$16,23,26,15,17,3,18,22$	28, 30, 29, 4, 12, 1, 25, 21	7, 14, 11, 10, 2, 13, 6, 5
45-60cm	19, $20,28,24,9,22,18,8$	21, 16, 27, 30, 31, 3, 32, 15	2, 13, 5, 25, 4, 23, 14, 29	17, 12, 7, 11, 10, 1, 26, 6
+15cm	$20,28,14,23,26,24,27,7$	11, 25, 22, 16, 8, 9, 29, 18	12, 6, 2, 31, 13, 15, 21, 10	30, 17, 1, 4, 3, 19, 32, 5
+30cm	$20,14,23,26,28,27,24,7$	11, 25, 22, 16, 8, 9, 29, 12	18, 6, 31, 2, 13, 15, 21, 30	10, 1, 17, 4, 19, 3, 32, 5
+60cra	14, 25, 23, 28, 20, 7, 11, 27	24, 25, 6, 22, 29, 12, 16, 8	$18,2,13,10,1,9,31,15$	21, 30, 17, 4, 3, 5, 32, 19
Equivalent No. of crees	20, 28, 24, 9, 19, 16, 27, 8	22, 18, 29, 23, 3, 14, 30, 26	17, 21, 32, 11, 2, 7, 15, 31	$10,4,25,1,12,5,13,6$

Stocking Scrata	Superior	Good	Modarate	Poor
Block Identities	$20,24,28,27,8,23,9,7$	$16,22,3,26,18,29,11,14$	$30,2,31,32,25,15,21,12$	$4,19,13,17,6,1,10,5$
Replications	Replication 1	Replicarion 2	Replication 3	Replicacion 4

BORANG HA/1A KUADRAT $20 \mathrm{~m} \times 20 \mathrm{~m}$ (UKURAN POXOK +15 em glameter)	NO. KAD

PROJEX BERSAH MALASSIA - ITTO
(HUTAM ASLI)

botang ha/lb KUAORAI $20 \mathrm{~m} \times 20 \mathrm{~m}$ (UKURAA POKOK $\$ 5 \mathrm{~cm}$ DIAMETER)	ко. xad

a. makllumat ma

tantur	8uLam		negert		datrah		kutan SIMPak		но. XDHPARTME			JEMIS bahitar	No.pelak		$\begin{gathered} \text { KO. } \\ \text { хUQR } \end{gathered}$		CERUM					мuka	nakisak	ketingaian	JehtsHutak		Jehis		GE0LOG]		Stsa	81L.		${ }_{\text {B1L }}^{\text {日uLun }}$				Plich	¢ ${ }_{\text {RESAM }}^{\text {\% }}$	HALiA	$\stackrel{\text { PISAKG }}{\text { \% }}$							
				2				tempat				ASPEK																																				
12	3	41			+ 5	6			7	8	s		10				12		16	15	16	17	18	19	20	21	22		\|25 25	26	27	28	29		31	32	33	36		36	37	38	39	40	4162	43	¢4	45
!																																																

8. haklumat pokon

porok	$\underset{\text { SPEsics }}{\text { yot }}$	$\begin{aligned} & \text { HRME } \\ & \text { HPESIES } \end{aligned}$	Dahlil ${ }^{\text {a }}$,									sekarane ()								cataian
			\|c.	$\begin{gathered} \text { O1AHETER } \\ (\mathrm{cm}) \end{gathered}$		isit. balak		ruatim	$\begin{aligned} & \text { ROSAK } \\ & \text { BATAN } \end{aligned}$	$\begin{aligned} & \text { ROSAK } \\ & \text { SILARA } \end{aligned}$		K. poro	diameter (cm)			IBIL. balar.	$\begin{aligned} & \text { KUALIT1 } \\ & \text { E. } 1 \end{aligned}$	$\begin{aligned} & \text { ROSAK } \\ & \text { BATAH } \end{aligned}$	rosak	
118\|3	$4 \leq 1 \leq 17$		8	9	$10 \mid 11$. 12 \|	13	14	1		16	47	1^{18}	1912	0.21	22	23	24	25	
,	\cdots				!	.				,					-					
1	$\square \quad 1$				1	-							,	1	-					
1	1				1	-								1	\cdot					
1	! !					\cdot				1				1	.					
1	!					\cdot	+	1		+				1	.					
1	; ;					-				I				+	.					
$!$	1				1	.				!				$!$	-					
\square	!				1	.			!						.					
1	1					.	I			1			1		.					
1	$1 \quad 1$.							+		-					
1	-														.			1	1	
	1 i					.							1	1	-					
i	$1!$.					
1	1					\cdot					I		1		\cdot		1			
1	1 1						;				I				.		1	$!$!	

 \square
\square (hutan asti)

SORANE HA/2 kuadrat 5 mix 5 m (UKURAN POKOK 4950 cm TIMEG - $5 \mathrm{~cm} \mathrm{DIAHETER)}$	no. kat

a. maxllumat am

уamin	buian	ncters	datrah	หปTa: SIMPA		JEN15	no.PETAK	$\underset{\substack{\text { NO. } \\ \text { KUABAT }}}{ }$			ceruk					${ }_{\text {PUSAKA }}^{\text {IANA }}$	hakisak	ketingian	Jehis hutan	Jenistanar		\|080.08;		$\begin{array}{c\|} \text { SISA } \\ \text { IEBANGAN } \end{array}$	$\begin{aligned} & \text { B1L } \\ & \text { ROTAK } \end{aligned}$	8IL. виции		$B 1 L \text {. }$BERIAM		BIL. palma		$\underset{\text { resam }}{\text { z }}$	HRL1A	$\underset{\text { Pisang }}{\text { \% }}$
												\%		тEMPAI	ASPEK																			
$1{ }^{1} 2$; 4	6	718	915	$1: 3$	16		61	17	18	19	20	21	22	23	26 ! 25	26	27	128129	30	13.1	'za	13	34	[35 30	37	38	137	40	14	2	63	4	45

B. MAKLIMAT POKOK

B. maxlimat poxor

PROCEDURE FOR ESTABLISHMENT OF STUDY AREA IN LOGGED OVER FOREST

TABLE OF CONTENTS
LIST OF APPENDICES ii
LIST OF TABLES iii
LIST OF FIGURES iv
1.0 INTRODUCTION 1
2.0 ESTABLISHMENT OF STUDY AREA 4
2.1 Selection of Study Area 8
2.2 Post-Felling Forest Inventory 8
2.3 Number and Size of Treatment Blocks and Permanent Sample Plots 12
2.4 Replication of Treatments and Stractifation of Study Area 13
3.0 RANDOMISATION OF TREATMENTS 23
4.0 BOUNDRY DEMARCATION OF TREATMENT BLOCKS 23
5.0 SETTING UP OF PERMANENT SAMPLE PLOTS AND DATA COLLECTION 23
5.1 CL, GCL And Control Treatment Block 23
5.2 Enrichment Planting (EN) Treatment 31 Block
5.3 Indigenous Forest Plantation Treatment Block 33

LIST OF APPENDICES

APPENDIX		Technical Decisions Made During The Meeting of The Technical Working Group On Forest Management of Natural Forest In Malaysia
APPENDIX II	:	POST-FELLING INVENTORY FIELD SHEET
APPENDIX III	:	ENUMERATION FORM HB/1A (Measure Tree +15 cm Diameter)
APPENDIX IV	:	ENUMERATION FORM HB/1B (Measure Tree +5 cm Diameter)
APPENDIX V	:	ENUMERATION FORM HB/2 (Measure Tree +150 cm Height - 5 cm Diameter)
APPENDIX VI	:	ENUMERATION FORM HB/3 (Measure Sapling $15 \mathrm{~cm}-150 \mathrm{~cm}$ Height)
APPENDIX VII	:	Enumeration/Measurement Schedule Of Permanent Sample Plot, Joint Project Between Malaysia/ITTO, Compartment 194/205, Kledang Saiong Forest Reserve, Perak
APPENDIX VIII	:	Enumeration/Measurement Schedule Of Permanent Sample Plot, Joint Project Between Malaysia/ITTO, Compartment 39, Cherul Forest Reserve, Terengganu
APPENDIX IX	:	Operational Manual For The Girdling of Trees And Cutting Of Liana (GCL)
APPENDIX X	:	ENUMERATION FORM HB/5 (Enrichment Planting)
APPENDIX XI	:	Operational Manual For Enrichment Planting
APPENDIX XII	:	ENUMERATION FORM HB/4 (Forest Plantation)

LIST OF TABLES

TABLE 1		Non-Cumulative Summary of Stand And Stock Table For Treatment Block 01, Compartment 194 And 205, Kledang Saiong Forest Reserve, Perak
TABLE 2	:	Cumulative Summary of Stand And Stock Table For Treatment Block 01, Compartments 194 And 205, Kledang Saiong Forest Reserve, Perak
TABLE 3	:	Categorisation And Allocation Of Treatments For Treatment Blocks In Compartments 194 And 205, Kledang Saiong Forest Reserve, Perak
TABLE 4	:	Categorisation And Allocation Of Treatments For Treatment Blocks In Compartment 39, Cherul Forest Reserve, Terengganu

LIST OF FIGURES

FIGURE 1		Location Map Of Study Areas Under The Joint Malaysia-ITTO Project (Logged-over Forest)
FIGURE 2	:	Compartment 194 And 205, Kledang Saiong Forest Reserve, Perak
FIGURE 3	:	Compartment 39, Cherul Forest Reserve, Terengganu
FIGURE 4	:	Layout Of Post-Felling Forest Inventory Sample Plots
FIGURE 5	:	Treatment Block Design
FIGURE 6	:	Distribution Of Post-Felling Forest Inventory Sample Plots For Study Area In Compartments 194 And 205, Kledang Saiong Forest Reserve, Perak
FIGURE 7	:	Distribution Of Post-Felling Forest Inventory Sample Plots For Study Area In Compartment 39, Cherul Forest Reserve, Terengganu
FIGURE 8	:	Location Of Various Treatments Within The Study Area In Kledang Saiong Forest Reserve, Perak
FIGURE 9	:	Location Of Various Treatments Within The Study Area In Cherul Forest Reserve, Terengganu

- v -
FIGURE 10 : Location Of Permanent Sample Plot
In Kledang Saiong Forest Reserve,
Perak27
FIGURE 11 : Location of Permanent Sample Plot In Cherul Forest Reserve, Terengganu 28
FIGURE 12 : Permanent Sample Plot Design For CL, GCL, Enrichment Planting, GCL And Control Treatment Blocks29
FIGURE 13 : Permanent Sample Plot Design For Enrichment Planting Treatment Block ($3 \mathrm{~m} \times 10 \mathrm{~m}$)32
FIGURE 14 : Permanent Sample Plot Design For Plantation Treatment Block (3m x 6m) 34

JOINT PROJECT BETWEEN MALAYSIA-ITTO ON "FOREST MANAGEMENT OF NATURAI FOREST IN MALAYSIA"

PROCEDURE OF ESTABLISHMENT OF STUDY AREA IN LOGGED-OVER FOREST

1.0 INTRODUCTION

In November 1987, Malaysia submitted a project proposal entitled "Forest Management of Natural Forest in Malaysia" for consideration and possible funding by the International Tropical Timber Organisation (ITTO).

The Third Session of ITTO held in Yokohama, Japan from 11-20 November 1987 approved the Project for immediate implementation and financing with conditions that certain amendments be made to the project Document as recommended by the Permanent Committee on Reforestation and Forest Management .

The revised Project Document was then resubmitted to ITTO and subsequently, the Contract Agreement for the implementation of the Project was signed between the Government of Malaysia and ITTO on 8 August, 1988 in Kuala Lumpur, Malaysia.

Under this Project, a total of four (4) study areas will be established with two (2) of the study areas being located in virgin forest while the remaining two (2) in logged-over forest.

The main objectives of this Project are fourfold which are as follows:-
(i) to examine in detail the distribution of natural regeneration and the response of residual stand under various management (felling) regimes in two (2) virgin forest areas;
(ii) to increase the understanding of the regeneration capacity of the dipterocarp forest under various silvicultural treatments in two (2) logged-over forest areas;
(iii) to conduct a comprehensive study in the establishment of forest plantation of indigenous tree species; and
(iv) to contribute to the formulation and implementation of sound silvicultural forest management systems for the dipterocarp forest in Peninsular Malaysia.

This paper documents the procedures for establishing the two (2) study areas in logged-over forests in the following locations:-
(i) Compartments 194 and 205, Kledang Saiong Forest Reserve, Perak - 425 ha

(ii) Compartment 39,
 Cherul Forest Reserve, Terengganu, 380 ha

Abstract

Compartments 194 and 205, Kledang Saiong Forest Reserve are located centrally in Kuala Kangsar District which lies along latitude $4^{\circ} 45^{\prime} \mathrm{N}$ and longitude $100^{\circ} 45^{\circ} \mathrm{E}$ and easily accessible by metal and laterite road. The total area of the two (2) compartments amounts to 425 hectares. However, only 200 hectares are utilized for the study. The study area is generally undulating to hilly, with elevations ranging from 150 m to 450 m above sea level and disected by Sungai Buaya and its many tributaries. This forest is considered as Keruing-Meranti forest and is managed under the selective management system.

[^0]The locations of the two (2) study areas are shown in Figure 1, 2 and 3.

The two (2) study areas as mentioned-above was approved by the respective State Governments to be set aside for the purpose of the project and for a duration of at least ten (10) years, as required by ITTO beginning from :-

Study Area Date of Approval
(i) Compartments 194 and 205

Kledang Saiong Forest Reserve 21 June 1989 Perak
(ii) Compartment 39,

Cherul Forest Reserve, 26 July 1989
Terengganu

2.0 ESTABLISHMENT OF STUDY AREA

For the purpose of this Project, a special committee
called the "Technical Working Group on Forest Management of
Natural Forest in Malaysia", comprising members from the
Forestry Department Headquarters, Peninsular Malaysia, the
State Forestry Departments of Pahang, Selangor, Perak and
Terengganu, the Forest Research Institute of Malaysia (FRIM)
and the Faculty of Forestry, University of Agriculture,
Malaysia (UPM), was established to formulate establishment
procedures as well as to plan and implement the Project. The
list of technical decisions made by the Technical Working
Group in the course of project implementation appears as
Appendix I. The establishment procedures for the two
study areas in the logged-over forest are as follow :-

Figure 1 : Location Map of Study Areas
Under The Joint Malaysia-ITTO Project
(Logged-Over Forest)

Figure 2 : Compartment 194 \& 205
Kledang Siong Forest Reserve Perak

Figure 3 : Compartment 39
Cherul Forest Reserve
Terengganu

2.1 SELECTION OF STUDY AREA

In the selection of the study areas, the following criteria were considered :-
(i) the area must be within the Permanent Forest Estate;
(ii) the area must be a logged-over forest;
(iii) access must be reasonable ie. the location must be within 10 to 16 km from an allweather major (public) road; and
(iv) the respective State Governments must provide formal agreement to set aside the study area, to be maintained by the Forestry Department for a period of at least 10 years.

2.2 POST-FELLING FOREST INVENTORY

Prior to the demarcation and stratification of the study area into various stocking classes and subsequent silvicultural treatments a post-felling forest inventory was carried out to determine the stocking and structure of the forest. This inventory was carried out using systematic line-plots of size 50 m x 20 m with four (4) sub-plots of size $25 \mathrm{~m} \times 20 \mathrm{~m}, 10 \mathrm{~m}$ $\mathrm{x} 10 \mathrm{~m}, 5 \mathrm{~m} \times 5 \mathrm{~m}$ and $2 \mathrm{~m} \times 2 \mathrm{~m}$. The sampling lines were parallel to one another at 100 m apart with the 50 m x 20 m principal plot being 50m apart, along each
sampling line or 100 m from one plot centre to the next as shown in Figure 4.

The description of the sample plots, area and respective equivalent sampling intensities are as follows:-

Description of sample plot	Area (ha)	Sampling Intensity (\%)
50m x 20m principal plot	0.1000	10.00
$25 \mathrm{~m} \times 20 \mathrm{~m}$ sub-plot	0.0500	5.00
$10 \mathrm{~m} \times 10 \mathrm{~m}$ sub-plot	0.0100	1.00
5m $\times 5 \mathrm{~m}$ sub-plot	0.0025	0.25
2m m 2m sub-plot	0.0004	0.04

The size classes of trees enumerated within the sample plots are as follows:-

Sample plot	Size class	Description
$50 \mathrm{~m} \times 20 \mathrm{~m}$	$>45 \mathrm{~cm} \mathrm{dbh}$	Big trees
	>30cm-45cm dbh	Small trees
$25 \mathrm{~m} \times 20 \mathrm{~m}$	>15cm-30 cm dbh	Big poles
10 m x 10 m	$>5 \mathrm{~cm}-15 \mathrm{~cm} \mathrm{dbh}$	Small poles
$5 \mathrm{~m} \times 5 \mathrm{~m}$	$>1.5 \mathrm{~m}$ ht-5cm dbh	Saplings
$2 \mathrm{~m} \times 2 \mathrm{~m}$	15cm-1.5m ht	Seedlings

Figure 4 : Layout of post-Felling Forest
Inventory Sample plots
All trees within each size class corresponding to
the selected sample plot, were enumerated by species
while sample trees having a minimum diameter of 15 cm
dbh were measured to the nearest one-tenth centimetre
at breast height (dbh) (1.3 m above ground) or 0.3 m
above buttress. In addition, the quality and the
number of logs were also enumerated for each of the
sample trees classes of >15cm dbh. The presence of
climbers intertwinning sample trees were also
recorded. However, for trees class >5cm to 15 cm dbh,
vigour and stem form were recorded, while for trees
<5cm dbh, only their presence were recorded.

In addition, the presence of Bertam (Eugeissona triste), bamboos, palms, ferns, gingers and wild bananas were also recorded together with other site information such as slope, aspect, elevation, soil and forest types.
The forest inventory data were recorded in
field sheets as shown in Appendix II. The inventory
data were processed and analysed by computer which
provided for each of the treatment block (comprising of
post-felling forest inventory sample plots) in the form
of summaries of stand and stock tables, showing gross
and net number of trees per ha, gross and net volume
per ha and basal area per ha by species groups and
diameter classes.

```
2.3 NUMBER AND SIZE OF TREATMENT BLOCKS AND
PERMANENT SAMPLE PLOTS
According to the ITTO Agreement, five (5)
silvicultural treatments are carried out in the study
areas, viz:-
Treatment A: Cutting of liana (CL);
            Treatment B: Girdling of trees and cutting of
                            liana (GCL);
Treatment C: Girdling of trees and cutting of
                            liana (GCL) coupled with enrichment
                    planting;
Treatment D: Establishment of indigenous forest
    plantation; and
Treatment E: Control (no treatment).
    It was agreed that each treatment be replicated
four (4) times over an area of 200 ha. This amounted
to 20 treatment blocks (5 treatments x 4
replications), each measuring approximately 316m x
316m (10 ha). In the centre of each treatment block
a permanent sample plot measuring 100m x 100m (1 ha)
would be established. The remaining area (9 ha)
surrounding each permanent sample plot would be
considered as the 'buffer zone'. There would therefore
be a total of 20 permanent plots, within which all
enumerations would be taken.
```

The details of which are as follows:-

Permanent Sample Plot	$100 \mathrm{~m} \times 100 \mathrm{~m}=1 \mathrm{ha}$
Treatment Block	$316 \mathrm{~m} \times 316 \mathrm{~m}=10 \mathrm{ha}$
Buffer Zone	Remaining 9 ha surrounding
	the permanent sample plot

Figure 5 shows the design of the treatment block.

```
2.4 REPLICATION OF TREATMENTS AND STRATIFICATION
OF STUDY AREA
As mentioned earlier, it was considered essential that each treatment be replicated for meaningful statistical analysis. As agreed, for this study, all the five treatments as mentioned in para 2.3 would be replicated four times.
```

The stratification of the study area into four
(4) different basal area categories; was based on the analysis of the post-felling forest inventory data of each treatment block. Figures 6 and 7 show the distribution of the post-felling forest inventory sample plots; within each treatment block for the study areas in Compartments 194 and 205, Kledang Saiong Forest Reserve and in Compartment 39 Cherul Forest Reserve, respectively.

The post-felling forest inventory data were analysed and summarized into treatment block averages,

Figure 5 : Treatment Block Design

```
Scale 1:25,000
```


Figure 6 : Distribution of Post-Felling Forest
Inventory Sample Flots For Study Area In Compartments 194 And 205. Kledang Saiong
Forest Reserve, Perak

LEGEND
\square Post-Felling Sample Flot
\square Treatment Block

Figure 7 : Distribution Of Post-Felling Forest
Inventory Sample plots For Study Area
In Compartment 39. Cherul Forest
Reserve, Terengganu
using the computer programme developed by the Forestry Department Headquarters, which provided for each treatment block summaries of stand and stock tables (both Cumulative and Non-cumulative) showing the following:-
a) gross number of trees per ha)
b) net number of trees per ha ;
by species groups and
c) gross volume per ha diameter classes
d) net volume per ha
e) basal area per ha ,

An adapted version of the Non-cumulative and Cumulative summaries of stand and stock tables for Treatment Block 01 in the Kledang Saiong Forest Reserve are shown in Tables 1 and 2 respectively.

For a complete randomisation of each treatment into four replications, homogenity is required over the whole study area. However, this is difficult to achieve in a mixed tropical forest which is heterogenous in nature. Hence, a practical solution to this problem was to stratify each study area into categories of approximately homogenous forest stocking (in terms of basal area/ha) and locating a full series of five treatments in each category. The basal areas obtained from the summaries of stand and stock tables (as shown in Tables 1 and 2) were classified into four (4) basal area categories. The decision to remove trees to

Non-Cumulative Summary of Stand And Stock Table For Treatment Block 01 , Compartments 194 And 205, Kledang Saiong Forest Reserve, Perak

Table 2 : Cumulative Sumary of Stand And stock Table For Treatment Block 01, Compartments 194 And 205. Kledang Saiong Forest Reserve, Perak

srectes gnour	DI:METEI ClASS(cm)		15	30	45	50	53	60	65	71	75	00	85	$90+T$		
									. 00	. 00	. 00	. 00	. 00			
cnove 1	gross	M0. OF THEES		. 10	1.11	1.11	(1)	1.11	. 00	. 00	. 00	. 00	. 00	. 00	. 00	
	HET	Ho. Of tIIfes	. 10	. 67	78 .09	00 00	.78 1.78	. 00	. 00	. 00	. 00	. 00	. 00	. 00		
		gnoss vol.ume	. 00	1.00	. 09	no	1.06	. 00	. 00	. 00	. 00	00	. 00	. 00		
crour 3		het volume	. 00	(i)	70	0	1.06 .17	. 00	. 00	. 00	. 00	. 00	. 00	. 00		
		dasal. Allen	00	16	. 20	,				00	00	00	. 00	. 00		
	gross	HO. Of TIEES	00	1.11	.00	10	00	. 00	. 00	. 00	. 00	. 00	. 00	. 00		
	HET	HO. OF THFES	. 00	07	. 00	110	. 00	0	. 00	. 00	. 00	. 00	. 00	. 00		
		gnoss voluhe	. 010	50	. 00	00	. 0	. 00	. 00	. 00	. 00	. 00	. 00	. 00		
		het volune.	. 10	$0!$. 010	, 0	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00		
cnour 4		basal area	00	00	. 01	(00	00	. 00	. 00	1.11	1	
	cross	Ho. of thees	13.33	1.11	2.22	.00	1.11	00	. 00	. 00	. 00	. 00	. 00	. 89	1	
		no. OF Tllers	0.17	. 07	1.50	. 00	. 78	. 00	. 00	. 00	. 00	. 00	. 00	16.34	2	
		gross volume	1.3:;	117	2.30	00	1.02	+00	. 00	. 00	. 00	. 00	. 00	11.41	1	
		Het volume	11	. 52	1.12	00	1.09	. 00	. 00	. 00	. 00	. 00	. 00	1.26		
gnour 5		dasal allea	12	. 13	. 36	. 00					00	00	. 00	. 00	2	
	cross	NO. OF TREES	11.11	6.07	1.11	1. 11	1.11		. 00	00	. 00	00	. 00	. 00	1	
	Het	Ho. Of thees	5.57	1.00	. 70	70	78	. 3.30	. 00	. 00	. 00	. 00	. 00	. 00	1	
		gnoss volume	1.31	J,00	1.22	1.50	2.03	3.36	. 00	. 00	. 00	. 00	. 00	. 00		
grour 6		*IET VOLUAE	80	2.13	.73	0.1	1.22	31	00	. 00	. 00	. 00	. 00	. 00		
		DASAL AIEA	$\because 11$	\% 0	119	$2 \cdot 1$	1					00	0	00		
	cnoss	M0. OF TMEES	. 00	1. 11	. 00	. 00	. 00	00	. 00	00	. 89	. 00	. 00	. 00		
	HET	M0. Of thees	. 00	67	. 00	. 00	00	. 0	00	. 00	6.60	. 00	. 00	. 00		
		gross vorimie	. 00	51	. 00	00	. 00	-0	On	. 00	1.62	. 00	. 00	. 00		
		Het volume.	. 00	. 31	. 00	00	0	ก0	. 00	. 00	. 51	. 00	. 00	. 00		
gnour 7		basal. Allen	. 00	08	. 00	(1)	. 0						¢0	. 00		
	gross	Mo. Of TMEES	00	1.11	1.11	00	1.11	1.11	. 00	. 00	00	. 00	. 00	. 00		
	Het	Ho. Of thefs	. 00	. 61	. 78	. 10	. 78	. 19	. 00	. 00	. 00	. 00	. 00	. 00		
		ghoss volume	. 00	1.0?	1.27	100	1.93	3.11	. 00	. 00	. 00	. 00	. 00	. 00		
		HET VOLIMIE	. 00	61	. 76	00	1.16	2.18	. 00	$00:$. 00	. 00	. 00	. 00		
grour 8		basal ahea	. 00	15	. 20	. 00	. 1	. 3							$7:$	
			12.22	15.50	5.50	5.50	2.22	1.11	. 00	. 00	1.11		. 00	00	1 1.	
	gross	10. Of inees	2.1 .11	9.33	3.89	3.89	1.50	. 09	. 00	. 00	, 00			00	1.	
	HET	Ho. Of thefs	21.11 5.30			7.55	3.79	3.23	. 00	. 00	. 00	1. 30			2.	
		cnoss vot.the	5.30	10.06	0.31	1.5	2.27	2.25	. 00	. 00	. 00	5.12	. 00	. 00		
		Het votume	3.33	6.5?	0.70	1.97	2. c ,	$\bigcirc 3$. 00	. 00	. 00	56	. 00	. 00	1	
diptenocars		bASAL AREA	1.60	1.71	. 07						00	. 00	. 00	1.11	2 :	
		Ho. Of The.es	13.17	3.33	3.33	. 00	2.22	. 00	00	00	00	. 00	. 00	. 89	1 :	
		no. of tnees	6.67	2.00	2.33	. .00	1.56	. 00	. 0	. 00	. 00	. 00	. 00	16.31	2	
		gnos's volime	1.55	2.13	3.67	00	3. 50	0	. 00	. 00	. 00	. 00	. 00	11.41	11	
		het volume	. ${ }^{1}$	1.16	2.20	. 0	2.15			00	. 00	. 00	. 00	1.26		
$\mathrm{HOH}-$ dImi:nocanp		bASAL AIEA	. 12	37	50	กo	5	,								
	dins	110.	53.73	2.1.11	7.71	6.69	1.14	3.33	. 00	. 00	1.11			00	5	
	cmoss	Mo. Of Thers	2 Ca	1.1 .67	5.41	小. © 1	3.11	2.61	. 00	. 00	. 89			00	7	
	HET	10. Of Theres		10.15	0.110	9.11	7.75	9. 70	. 00	. 00	6.60	7.30		. 00	$4!$	
		ghoss vorimme			5.98		1. 65	0.79	. 00	. 00	1.62	5.11				
		Het volume	1.03	9.87	5.28			n9	. 00	. 00	. 51	. 56	. 00	. 00	11	
101d.		DASAL AlEA	2.07	3.57	1.35	1.90							00	1.11	$12!$	
		10 OF Theesi	G6.g]	27. 711	11.11	f. $1: 1$	(i) 1; 7	3.31	. 00	. 010	1.11	8.8	. 00	. 89	$7:$	
		no. of thr.r.g	33.3:	16.61	7.711	1. 17	2.67	00	00	. 00	6. 60	7.30	. 00	16.34	$9!$	
		cnoss volimic	0.01	11110	1:3.10	10.11	11.J1	9.70	. 0	. 01	4.62	5.11	. 00	11.44	$6:$	
		Het votillic	1.81	11. $1: 3$	7.111	[1. 17	G. 10		. 00	00	51	. 56	. 00	1.26	$1:$	

```
reduce the basal area of a particular treatment.block
was based on the ability to classify the basal area of
that treatment block into one of the four categories.
If the basal area of the particular treatment block
could be so classified, then no removal of trees to
reduce the basal area was recommended. On the other
hand, if the treatment block could not be classified
into any of the basal area categories, then trees in
this block would have to be removed so as to reduce the
basal area to a level capable of being classified into
one of the categories. However, no trees were required
to be removed from both the study areas.. Table 3
shows the categorisation and allocation of treatments
for treatment blocks for the study area in Compartments
194 and 205, Kledang Saiong Forest Reserve while Table
4 shows the similar categorisation and allocation for
the study area in Compartment 39, Cherul Forest
Reserve. All the treatment blocks were ranked
accordingly for each of the categories.
```

```
TABLE 3 : CATEGORISATION AND ALLOCATION OF TREATMENTS
FOR TREATMENT BLOCKS IN COMPARTMENTS
194 & 205 KLEDANG SAIONG FOREST RESERVE,
PERAK
```

 BASAL AREA
 \(\begin{array}{lll}\text { CATEGORY } & \text { TREATMENT } & \\ \text { (m. sq./ha) } & \text { BLOCK NUMBER } & \text { TREATMENT }\end{array}\)
 $>13.0-15.0$
01
GCL
07
CL
09
GCL \& EP
10
Control
11
plantation

> $11.0-13.0$			02	CL
			03	GCL \& EP
			16	GCL
			17	Plantation
			20	Control
>	9.0-11.0		05	GCL \& EP
			06	Control
			13	GCL
			14	Plantation
			15	CL
>	7.0	- 9.0	04	Plantation
			08	CL
			12	GCL
			18	Control
			19	GCL \& EP

Note:
-.-- -

```
GCL - Girdling and Cutting of Liana
CL - Cutting of Liana
EP - Enrichment Planting
```

```
    TABLE 4 : CATEGORISATION AND ALLOCATION OF TREATMENTS
                        FOR TREATMENT BLOCKS IN COMPARTMENT 39,
                        CHERUL FOREST RESERVE, TERENGGANU
```


Note:

> GCL - Girdling and Cutting of Liana
> CL - Cutting of Liana
> EP - Enrichment Planting

3.0 RANDOMISATION OF TREATMENTS

For meaningful statistical analysis at a later stage,
the allocation of various treatments for treatment blocks
within each basal area category was randomised, except for
the establishment of indigenous forest plantation. The
allocation of the treatment blocks for forest plantation
was pre-determined based on slope conditions and accessibility. The pre-determined and randomised location of the various treatments within the study areas at Kledang Saiong Forest Reserve and Cherul Forest Reserve are as shown in Figures 8 and 9 respectively.

4.0 BOUNDARY DEMARCATION OF TREATMENT BLOCKS

\qquad

Boundary demarcation (1m wide) for all the treatment blocks was carried out. Along the boundaries, all trees below 10 cm dbh were removed while the four corners of each treatment block were marked by 5 cm diameter PVC pickets. In addition, circumferences of trees below 30 cm dbh were painted red at breast height at intervals of 10 m along the boundaries.
5.0 SETTING UP OF PERMANENT SAMPLE PLOTS AND DATA COLLECTION

5.1 CL, GCL AND CONTROL TREATMENT BLOCKS

A permanent sample plot (PSP) measuring loom x 100m (1 ha) was set up in each CL, GCL and Control treatment block. The exact location of PSP are as shown

Figure 8 : Location of Various Treatments within The Study Area In Kledang Saiong Forest Reserve, Perak

Figure 9 : Location OF Various Treatments Within The study Area In Cherul Forest Reserve, Terengganu
in Figure 10 and 11. The design of the permanent sample plot is shown in Figure 12.
Each permanent sample plot consists of twenty-
five (25) quadrats (sub-plots) of size $20 \mathrm{~m} \times 20 \mathrm{~m}$
(quadrat 1-25), nine (9) quadrats of size $5 \mathrm{~m} \times 5 \mathrm{~m}$
(quadrat $26-34$), and nine (9) quadrats of size $2 \mathrm{~m} \times 2 \mathrm{~m}$
(quadrat $35-43$).

The dimension of the various quadrats, the quadrat numbers, the size class of trees to be enumerated within each quadrat and the enumeration forms to be used are as follows:-

Quadrat Size	Quadrat Number	Size Class	Enumeration Form
$20 \mathrm{~m} \times 20 \mathrm{~m}$	1, $2,3,4,5,6,10$,	$>15 \mathrm{~cm} \mathrm{dbh}$	HB/1A
	11,15,16,20,21,		
	22,23 24, 25		
$20 \mathrm{~m} \times 20 \mathrm{~m}$	7,8,9,12,13,14,	> 5 cm dbh	HB/IB
	17,18,19.		
$5 \mathrm{~m} \times 5 \mathrm{~m}$	26,27,28,29,30,	150 cm height	HB/2
	31,32,33,34.	- 5 cm dbh	
$2 \mathrm{~m} \times 2 \mathrm{~m}$	35,36, 37, 38, 39,	15 cm -	HB/3
	40,41, 42, 43.	150 cm height	

All trees above 5 cm dbh within each permanent sample plot were numbered sequentially using aluminium tags and the dbh recorded, while only the number of seedlings 15 cm high to saplings of size 5 cm dbh were recorded. All trees within the size class corresponding to the selected quadrats were identified to species level as far as possible while diameter measurements

Legend:
Treatment Block $316 \mathrm{~m} \times 316 \mathrm{~m}$ (10 ha)
Permanent Sample plot $100 \mathrm{~m} \times 100 \mathrm{~m}$ (1 ha)

Figure 10 : Location of Permanent Sample Plot In Kledang Saiong Forest Reserve. perak

Figure 11 : Location Of Permanent Sample plot In Cherul Forest Reserve, Terengganu

Quadrat size	Quadrat number	Size class
$20 \mathrm{~m} \times 20 \mathrm{~m}$	$\begin{aligned} & 1,2,3,4,5 \\ & 6,10,11,15, \\ & 16,20,21,22, \\ & 23,24,25 \end{aligned}$	$+15 \mathrm{~cm} \mathrm{dbh}$.
$20 \mathrm{~m} \times 20 \mathrm{~m}$	$\begin{aligned} & 7,8,9,12,13, \\ & 14,17,18,19 \end{aligned}$	+5 cms dbli
$5 \mathrm{n} \times 5 \mathrm{~m}$	$\begin{aligned} & 26,27,28,29, \\ & 30,31,32,33,34 \end{aligned}$	$\begin{aligned} & 150 \mathrm{~cm} \text { height - } \\ & 5 \mathrm{~cm} \text { dbh } \end{aligned}$
$2 m \times 2 m$	$\begin{aligned} & 35,36,37,38,39 \\ & 40,41,42,43 \end{aligned}$	$\begin{aligned} & 15 \mathrm{~cm}-150 \mathrm{cmt} \\ & \text { height } \end{aligned}$

KEY:
O Yellow Painted Plakel

- Red Painted Pickel
- Yellow Painted Picket
Scale 1cm: 6 m

Figure 12 : Permanent Sample Plot Design For CL, GCLA⿱艹id Control.
were taken to the nearest one-tenth of a centimetre and
height to the nearest centimetre. All diameters
were measured at breast height (1.3m above ground)
or 0.3 m above buttress.

In addition, a plot diagram showing the location as well as the number of trees enumerated within each quadrat was also prepared to facilitate future remeasurements.
The proposed measurement schedule is once every
year for the first five years of study, once in two
years until the 15 th year and thereafter once in five
years until the recommended time. The enumeration forms
HB/IA, HB/IB, HB/2 and HB/3 used are shown in
Appendices III, IV, V and VI respectively.
Enumeration/measurement schedules are shown in
Appendices VII and VIII.

Prior to the setting up of the permanent sample plots, CL and GCL silvicultural treatments were carried out in the respective treatment blocks. Basically, CL involved the cutting of all liana, while GCL involved the girdling of defect or damaged trees and the cutting of palms that shade the saplings and natural regeneration of the preferred species, besides the cutting of all liana. The chemical used for girdling in both the study areas was Escort 60 DF. The trees girdled were identified by species and dbh measured.

The location of trees girdled in each PSP is shown in the respective plot diagrams. Details are outlined in the Operational Manual for the Girdling of Trees and Cutting of Liana (GCL) as shown in Appendix IX.
5.2 ENRICHMENT PLANTING (EP) TREATMENT BLOCK
\qquad

A permanent sample plot measuring $100 \mathrm{~m} \times 100 \mathrm{~m}$ (1 ha) with 10 planting lines was set up in each Enrichment planting treatment block. The design of the plot is as shown in Figure 13. In addition, a plot diagram showing the location as well as the number of trees planted within the permanent sample plot was also prepared to facilitate future remeasurements. Two different indigenous species were planted in the eastwest direction, at a planting distance of $3 \mathrm{~m} x 10 \mathrm{~m}$. The species planted are Meranti sarang punai (Shorea parvifolia) and Mexanti tembaga (Shorea leprosula) in Kledang Saiong Forest Reserve and Meranti rambai daun (Shorea acuminata), Keruing kertas (Dipterocarpus chartaceus) and Sesendok (Endospermum malaccense) in Cherul Forest Reserve. No planting was carried out if a preferred species sapling was found within lm from the planting spot

Based on the proposed measurement schedule, the first measurement was carried out three months after planting. This was followed by the second measurement in

Buffer Zone

- Yellow Fainted PVC Picket
planting Line
(6.5 cm diameter size)
the 9 th month, the third in the 15 th month and the fourth in the 27 th month. Subsequent measurements are to be carried out on an annual basis, after the last measurement until the rotation age. The enumeration form $\mathrm{HB} / 5$ used is as shown in Appendix X . The Operational Manual for Enrichment planting is described in Appendix XI.

5.3 INDIGENOUS FOREST PLANTATION TREATMENT BLOCK

5.3.1 A permanent sample plot measuring $100 \mathrm{~m} \times 100 \mathrm{~m}$ (1 ha) with 17 planting lines was set up in each plantation treatment block. The design of the plot is as shown in Figure 14. Prior to planting, all trees 30 cm dbh and above were removed and planting lines cleared. Planting using two different species was carried out in the east-west direction at a planting distance of $3 \mathrm{~m} \times 6 \mathrm{~m}$.
5.3.2 The measurement schedule, tending of planted stock and the enumeration form $\mathrm{HB} / 4$ (Appendix XII) used are basically similar to those for enrichment planting, except that 3 years after planting, the residual forest stand within the permanent sample plot is to be gradually cleared. First pruning is to be carried out in the 5th year after planting, followed by the second pruning in year 8 and the third pruning in year 10.

Buffer Zone
Flanting Line

- Yellow Painted PVC picket
(6.5 cm diameter size)

Permanent Sample Plot

Figure 14 : Permanent Sample plot Design For Indigenous
Plantation Treatment Block ($3 \mathrm{~m} \times 6 \mathrm{~m}$)

APPENDIX I

```
Technical Decisions Made During The Meetings Of The
    Technical Working Group On Forest Management
    Of Natural Forest In Malaysia
```

1. Experimental design for the virgin and logged-over forest areas is the randomised block design.
2. The cutting limits (regimes) for the virgin forest areas are as follows :-
(a) Cut all trees having diameter $\geq 30 \mathrm{~cm}$ at breast height;
(b) Cut all trees having diameter $\geq 45 \mathrm{~cm}$ at breast height;
(c) Cut all dipterocarps and non-dipterocarps having diameter $\geq 35 \mathrm{~cm}$ and $\geq 30 \mathrm{~cm}$ at breast height respectively;
(d) Cut all dipterocarps and non-dipterocarps having diameter $\geq 50 \mathrm{~cm}$ and $\geq 45 \mathrm{~cm}$ at breast height respectively;
(e) Cut all dipterocarps and non-dipterocarps having diameter $\geq 65 \mathrm{~cm}$ and $\geq 60 \mathrm{~cm}$ at breast height respectively;
(f) Cut all dipterocarps and non-dipterocarps having diameter $\geq 75 \mathrm{~cm}$ and $\geq 70 \mathrm{~cm}$ at breast height respectively;
(g) Establishment of indigenous forest plantation (Cut all trees having diameter $\geq 30 \mathrm{~cm}$ at breast height followed by planting of indigenous tree species); and
(h) Control (no cutting).
3. For the logged-over forest area, the silvicultural treatments are as follows :-
(a) Cutting of liana (CL);
(b) Girdling of trees and cutting of liana (GCL);
(c) Girdling of trees and cutting of liana coupled with enrichment planting;
(d) Establishment of indigenous forest plantation; and
(e) Control (no treatment).
4. Pre-Felling and Post-Felling forest inventories to be carried out in the virgin and logged-over forest area respectively shall be of 10% intensity.
5. The size of the permanent sample plots to be established shall be $100 \mathrm{~m} \times 100 \mathrm{~m}$ (One hectare plot). The layout and design of the permanent sample plot (PSP) in the logged-over forest is the same as that in the virgin forest. However, a 10 m buffer zone surrounding the permanent sample plot which shall be subjected to the same treatment as the PSP is advocated for the logged-over forest.
6. The criteria for selecting species for the indigenous forest plantation shall be as follows :-
(a) Dominant species found in the forest area; and
(b) Commercial species.

Based on the above criteria, the following plantation species were selected for the four (4) study areas :-
i) Pahanq
(a) Mengkulang (Heritiera spp.)
(b) Meranti nemusu (Shorea pauciflora)
(c) Meranti sarang punai (Shorea parvifolia)
(d) Keruing gombang (Dipterocarpus cornutus)
(e) Meranti rambai daun (Shorea acuminata)
(f) Meranti tembaga (Shorea leprosula)
ii) Selangor
(a) Meranti sarang punai (Shorea parvifolia)
(b) Meranti rambai daun (Shorea acuminata)

iii) Perak

(a) Meranti tembaga (Shorea leprosula)
(b) Meranti sarang punai (Shorea parvifolia)
iv) Terenqganu
(a) Meranti sarang punai (Shorea parvifolia)
(b) Meranti rambai daun (Shorea acuminata)
(c) Keruing kertas (Dipterocarpus chartaceus)
(d) Sesendok (Endospermum malaccense)
7. The planting distance for the indigenous forest plantation is $3 \mathrm{~m} \times 6 \mathrm{~m}$ while that of enrichment planting is $3 \mathrm{~m} \times 10 \mathrm{~m}$.
8. Selection of tree species for enrichment planting is to be based on the dominance/availability of the species in the study area and in accordance with the 'Regeneration Sampling List'.
9. Enrichment planting need not be carried out at planting sites if there is already the presence of the desired species. However, if the trees found at the planting sites are not of the desired species, enrichment planting of the desired/selected species should be carried out at a distance of 1 meter to the right of the planting site. All planting lines are to be aligned in an east-west direction and be cleared of all under-growth at a distance of 0.5 m to the left and right of the line.
10. Priority is to be accorded to carry out enrichment planting in the Permanent Sample plots (4 plots of 1 ha each) while the balance of the area (remaining 36 ha) shall be planted in stages depending on the availability of seedlings. It is decided that each planting line is to be planted by a specific species.
11. Treatment and refilling schedule for enrichment planting and indigenous forest plantation is as follows :-
i) Treatment and refilling 1 : 3 months after planting
ii) Treatment and refilling 2 : 9 months after planting
iii) Treatment and refilling 3 : 15 months after planting
iv) Treatment and refilling 4 : 27 months after planting

Subsequently, treatment is to be carried out yearly during remeasurement until the 5 th year. Acceptable survival rate of seedling is 80%.
12. The total number of seedlings to be planted in the permanent Sample plot of size $120 \mathrm{~m} \times 120 \mathrm{~m}$ (inclusive of the buffer sone) under plantation establishment shall be 800 comprising not more than four (4) species. Each planting line shall be planted with a single species alternating with lines planted with other species in a sequential manner.
13. Prior to the planting of seedlings under plantation establishment, all residual trees 30 cm dbh and above within the Permanent Sample Plot ($120 \mathrm{~m} \times 120 \mathrm{~m}$) shall be cut and removed from the planting line.
14. A total of 480 seedlings comprising not more than 4 species shall be planted in the Permanent Sample Plot ($120 \mathrm{~m} \times 120 \mathrm{~m}$) under enrichment planting. It is decided that each planting line shall be planted with a single species alternating with lines planted with other species in a sequential manner.
15. All seedlings planted under plantation establishment and enrichment planting will be enumerated during remeasurement. For the initial measurements when the seedlings are less than 5 cm dbh, only total height will be measured. However, once the seedlings have achieved 5 cm dbh and greater, only diameter measurement will be taken. In addition, the total height of 30 dominant saplings, selected based on the tallest height recorded, for each species planted will also be measured. In the event of death to a dominant sampling a year after measurement, it will be replaced by the next tallest sapling based on the latest height measurement before the sapling achieved 5 cm dbh. However, if the dominant sampling dies in subsequent years, it will be replaced by trees having the next biggest diameter measurement.
16. It was decided that for both plantation establishment and enrichment planting, only trees planted within the Permanent Sample plots will be enumerated during remeasurement. Tree planted within the buffer zone need not be enumerated.
17. A blanked silvicultural treatment of the virgin forest in the form cutting of liana (CL) shall be conducted 3 years and 10 years after harvesting in view of the findings that liana are found to be most abundant during these periods.
18. Logging studies (harvesting cost) will be conducted over the whole study area. Average logging cost by treatment blocks will be obtained by proportioning the total logging costs incurred.
19. Assessment of stem and crown damage shall be conducted each time the remeasurement is being carried out and preferrably by a specially trained and assigned team of crew.
20. The logged-over forest at Kledang Saiong Forest Reserve, Perak is to be divided into four (4) different residual basal area (BA) classes. The four (4) BA classes and the corresponding blocks for each BA class are as follows :-

BA Class

(a) $>7 \sim 9 \mathrm{~m}^{2} / \mathrm{ha}$
(b) $>9-11 \mathrm{~m}^{2} / \mathrm{ha}$
(c) $>11-13 \mathrm{~m}^{2} / \mathrm{ha}$
(d) $>13-15 \mathrm{~m}^{2} / \mathrm{ha}$

Block No.

4, 8, 12, 18, 19
5, 6, 13, 14, 15
2, 3, 16, 17, 20
1, 7, 9, 10, 11
21. The logged-over forest at Cherul Forest Reserve, Terengganu is to be divided into four (4) different residual basal area (BA) classes. The four $B A$ classes and the corresponding blocks for each BA class are as follows :-

BA Class

(a) $>7.5-9.5 \mathrm{~m}^{2} / \mathrm{ha}$
(b) $>11.5-13.5 \mathrm{~m}^{2} / \mathrm{ha}$
(c) $>13.5-15.5 \mathrm{~m}^{2} / \mathrm{ha}$
(d) $>15.5-17.5 \mathrm{~m}^{2} / \mathrm{ha}$

Block No.

16, 04, 09, 10, 11
19, 14, 08, 12, 02
03, 13, 16, 20, 17
05, 07, 18, 01, 06
22. It was decided that all trees marked for felling within the Permanent Sample plot (1 ha) are to be felled while at least 90\% of all marked trees within the remaining treatment block (9 ha) for all treatment types should also be felled. Trees which pose danger to be felled shall be poison-girdled by using GARLON 250 (3, 5, 6 - Trichloro - 2 pyridyloxyacetic acid). Marked trees which are not felled should be recorded.
23. It was decided that the $2 \mathrm{~m} x 2 \mathrm{~m}$ quadrats will enumerate seedlings and samplings of size 15 cm height - 150 cm height instead of the earlier decision of size 15 mm height - 150 cm height.
24. The paremeters that shall be taken into account during the analysis of data are as follows :-
(a) Diameter increment;
(b) Basal area increment;
(c) Volume increment;
(d) Ingrowth;
(e) Mortality rate;
(f) Crown and stem damage;
(g) Road construction costs; and
(h) Harvesting cost

 LOGGED-OVER FOREST

facm LNTA anozar 20.420 a (nencume taik ols co olamitel	cuen wa.

A. Cexicil information

$\stackrel{\text { 号 }}{\bullet}$

$\begin{gathered} \text { TRES } \\ 40 . \end{gathered}$			5PEE:E5 Cos				$\begin{gathered} \text { SPECIES } \\ \text { HMKE } \end{gathered}$	Preytas ()										OSREENT ()										espues				
			$\begin{aligned} & \text { TREE } \\ & \text { comol } \end{aligned}$	OIDMETEX (a)				$\left\lvert\, \begin{aligned} & \text { Ho } \\ & \text { Locs } \end{aligned}\right.$	$\begin{array}{\|c\|} \hline \infty \\ \infty \\ \infty \end{array}$	Stans	crom	coumr	$\begin{aligned} & \begin{array}{l} \text { PEx } \\ 0000 \end{array} \end{aligned}$	DIMETER (ca)				\|xay	(a) ancit	Stans	0 COM	cocoum										
1	2	3					41	5	$6 \mid 7$	7		8	9	10	11	. 12	13	14	15	16	17	18	19	20		. 22	23	24	25	26	27	
													-										-									
					\|							.										-										
												-					1		.			-										
											+	.										-										
												-							1	1		-										
										1		-							1			-										
												-										-										
												-							1			-										
												-										-										
									1			.	1				+			1		-										

CXEY LEDNER Chat Reforate CuR VEAIflex	OATE OAIE DATE

A. cincris incocontion

$\stackrel{N}{N}$
A. TREE infDemation

A. Cyutes infomaricio

a. TEEE mpomation

$\begin{gathered} 7 \mathrm{RET} \\ 80 . \end{gathered}$				spectes wo.				speeies HUNE	preyime ()							azrent 61							xeruers				
				$\begin{aligned} & 12050 \\ & c=000 . \end{aligned}$	ClvaETE (ex)		MEICXT (a)			vicour	TREE Come.	DINAETEX. (en)		KEIEXT (8)			vimar										
1	2	31	14					5	6	7	8		9	10	- 11	12	13	- 14	15	16	17	- 18	19	20	- 21	22	
${ }^{1}$												-			-				-			-					
A											-			-				-			-						
A											-			-				:			-						
$\stackrel{ }{ }+$											-			-				.			-						
a										-	-			-				.			-						
A.		*			.	\therefore					\cdot			-				.	\cdots		-						
A											-			-				-	.		-						
A.	\cdot										.			-				-			.						
A											.			-				.			-						
A											-			-				-			-						

spertes 400				sperics	${ }^{40} \mathrm{P}$-ika			*enuxs
:	12	5	4		3	6	7	.
	1							
		I						
		1				I		
						.		
							-	

spectes ceme					sezers	senim				nowers
1	2	3		-		9	6	7		
							-			
							.			\cdot
										.
		-	-							

TREATMENT BLOCK	$\begin{gathered} \text { BLOCK } \\ \text { NO } \end{gathered}$	ENUMEFATION/MEASUREMENT										REMARKS
		FIRST	SECOND	THIRD	FOURTH	FIFTH	SIXTH	SEVENTH	ElGHTH	NINTH	TENTH	
CUMBER/LIANA CUTMNG (CL)	02	JAN/91	NOV/91	OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02 OCT/02 OCT/02 OCT/02	Enumeration/measurement is carried out once a year for the first five years.
	07	JAN/91	DEC/91	OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01		
	08	JAN/91	DEC/91	OCT/92	OCT/93	OCT/94	OCT/95	0CT/97	OCT/99	OCT/01		
	15	JAN/91	NOV/91	OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01		
POISON-GIRDLED	01	NOV/90	NOV/91	OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	0ct/02	Enumeration/measurement is carried out once a year for the first five years.
OF TAEES AND	12	DEC/90	NOV/91	OCT/92	OCT/93	OCT/94	0CT/95	OCT/97	OCT/99	OCT/01	OCT/02	
CLIMBER/LIANA	13	DEC/90	NOV/91	OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	
CUTTING (GCL)	16	DEC/90	NOV/91	OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	
GCL AND ENAICHMENT PLANTING (EP)	03	JAN/91	*AUG/NOV/91	@JAN/OCT/92	\#ОСТ/93	OCT/94	OCT/35	OCT/97	OCT/99	OCT/01	OCT/02	1. Enumeration $1-3$ month after planting 2. Enumeration II - 6 month after Enumeration I 3. Enumeration III - 6 month after Enumeration II 4. The next enumeration is done for every year/two years
	05	JAN/91	AUG/DEC/91	JAN/OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	
	09	JAN/91	AUG/DEC/91	JAN/OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	
	19	JAN/91	AUG/NOV/91	JAN/OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	
PLANTATION	04	DEC/90	*AUG/91	*JAN/92	\#OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	1. Enumeration I-3 month after planting 2. Enumeration II - 6 month after Enumeration I 3. Enumeration III - 6 month after Enumeration II 4. The next enumeration is done for every year/two years
	11	DEC/90	AUG/91	JAN/92	OCT/93	OCT/94	OCT/95	0С7/97	OCT/99	OCT/01	OCT/02	
	14	JAN/91	AUG/91	JAN/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	
	17	JAN/91	AUG/91	JAN/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	
CONTROL	06	FEB/91	DEC/91	OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	$0 \mathrm{OT} / 02$	Enumeration/measurement is carried out once a year for the first five years.
	10	FEB/91	DEC/91	OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	
	18	FEB/91	AUG/92	OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	
	20	MAC/91	NOV/91	OCT/92	OCT/93	OCT/94	OCT/95	OCT/97	OCT/99	OCT/01	OCT/02	

NOTES: TREATMENTS OF ENRICHMENT PLANTING AND PLANTATION

* $=$ I. Replanting/refilling
ii. Cleaning of planting lines
ii. Poison-grdled of non-RS species on planting lines
@ = 1. Replanting/refilling (fif survival rate less than 80\%)
il. Cleaning of planting lines
\# $=$ il. Cleaning of planting lines
iii. Polson-girdled of non-RS species which shaded the pianting Innes

TREATMENT BLOCK	$\begin{gathered} \text { BLOCK } \\ \text { NO } \end{gathered}$	ENUMERATION/MEASUREMENT										REMARKS
		FIRST	SECOND	THIRD	FOUFTH	FIFTH	SXXTH	SEVENTH	EGHTH	NINTH	TENTH	
CUMBER/LANA CUTING (CL)	01	OCT/91	AUG/92	AUg/93	AUG/94	AUG93	AUS/96	AUG/9B	AUG/00	AUG/02	AUG/04	Enumeration/measurement is carrled out once a year for the first the years.
	12	AUG/91	AUG/92	AUG/93	AUG/94	AUG/95	AUG/96	AUG/98	AUG\%O	AUG/02	AUG/04	
	16	JUN/91	AUG/92	AUGis3	AUG'94	AUG/95	AUG/96	AUG/98	AUGOO	AUG/02	AUG/04	
	20	AUG/91	AUG/92	A $\mathrm{US}^{\text {/ }} 3$	AUG/94	AUG/85	AUG/96	A ${ }^{\text {AG/98 }}$	AUGOO	AUG/02		
POISON-GIRDLED OF TREES AND CLMBER/LIANA CUTTNG (GCL)	08	JUN/91	AUG/92	AUG/93	AUG/94	AUG/95	AUG/96.	AUG/98	AUG/00	AUG/02	AUGios	Enumeration/measurement is carried out once a year for the first five years.
	11	SEP/91	AUG/92	AUG/93	AUG/94	AUG/95	AUG/96	AUG/gs	AUG/00	AUG/02	AUG/04	
	15	JULV91	AUG/92	AUG/93	AUG/94	AUG/95	AUG/96	Augar	AUG/00	AUG/02	AUG/04	
	18	AUG/9	AUG/92	AUG/93	AUG/94	AUG/95	AUG/96	AUG/98	AUG/00	AUG/02	AUG/04	
GCL AND ENAICHMENT PLANTING (EP)	07	*MAY/SEP/M1 JULJOCT/91 APR/AUG/91 MAY/SEP/91	@FEEJAUG/92 FEB/AUG/G2 FEE/AUG/92 FEB/AUG/92	*AUGS2/AUG93 AUG92/AUG93 auggi/Aug93 aug92/augg3	AUG/94	AUG/95	AUE/96	AUG/98	AUG/00	AUG/02	AUG/04	1. Enumeration 1 - 3 month atter planting 2. Enumeration II - 6 month ater Enumeration I 3. Enumeration III - 6 month after Efrumeration H 4. The neas enumeration is cone tor every year/2 yours.
	10				AUG/94	AUG/85	AUG/96	AUG/98	AUG/00	AUG/02	AUG/04	
	13				AUG/94	AUG/95	AUG/96	AUG/g	AUG/00	AUG/02	AUG/04	
	19				AUG/94	AUG/95.	AUG/96	AUG/98	AUG/00	AUG/02	AUG/04	
PLANTATION	02	APR/93	OCT/93	APR/94	APR/95	APR/96	APR/97	APPrgs	APROI	APRNO3	APRJOS	1. Enumeration $1-3$ month atter planting 2. Enumeration II - 6 month after Enumeration I 3. Enumeration III - 6 month atter Enumeration II 4 The nexa enumeraton is done for every yeark years.
	03	APR/93	OCT/93	APRIS 4	APPVS	APR/G	APR/97	APR/99	APR01	APR103	APP/105	
	04	APR/93	0CT/93	APP/94	APR/95	APR/96	APR/97	APR/99	APR/01	APR/03	APP/05	
	06	APAV9	OCT/93	APR/94	APR/95	APF196	APR/97	APR/59	APR/01	APP/03	APP/05	
CONTROL	05	JUL91	AUG/92	AUG/g3	AUG/S4	AUG/95	AUG/96	AUG/98	AUG/00	AUE/02	AUG/04	Enumeration/measusement is carried out once a years for the first five years.
	09	0ct/92	OCT/93	OCT/34	OCT/95	OCT/96	OCT/97	OCT/99	OCT/01	\bigcirc OCT/03	OCT/05	
	14	JuL/91	AUG/32	AUG/93	AUG/94	AUG/95	AUG/96	AUG/98	AUG/00	AUG/02	AUG/04	
	17	OCT/92	0CT/93	OCT/94	OCT/95	0ct/96	0ct/97	OCT/99	OcT/01	OCT/03	OCT/05	

NOTES: TREATMENTS OF ENRICHMENT PLANTING AND PLANTATION

* $=\quad$ L Replanting/refling
if. Cleaning of planting line
ii. Poson-girdled of non-FAS species on planting line
@ $=1$. Reptanting/refiling (it survival rate less than 80\%)
il. Cleaning of planting line
$=\quad$ ii. Cleaning of plantring line
iii. Poson-grided of non-RS species which staded the planting line

PERATION MANOAL FOR THE GIRDLING OF TREES AND CUTTING OF LIANA (GCL)

1.0 INTRODUCTION

1.1 These activities are to assist the residual stand after logging by cutting of liana and girdling of deformed trees (G) which shade the RS species.
1.2 The treatment will result in the opening of the forest
canopy to selected species. Some of the benefits are as
follows:-
i) To encourage the rapid growth of RS species;
ii) To reduce the competition from other trees having no commercial value;
iii) To improve the economic status of forest stand with selected species.
2.0 'CL' AND ' G ' GUIDELINE

The intensity of 'CL' and 'G' are different due to differences of forest types. The guidelines for carrying out 'CL' and 'G' are as follows:-
2.1 Cutting of Liana (CL)
2.1.1 This operation involves the cutting of all liana found in the area. The cutting should be carried out in two parts ie. at the bottom, close to the ground and in the upper part, as high as possible. Liana having $>1.5 \mathrm{~cm}$ dbh need to be poisoned.
2.2 Girdling And Poisoning Of Trees (G)
2.2.1 The trees to be frill-girdled are as follows:-
i) Deformed RS species with diameter $>45 \mathrm{~cm}$ (broken, hollow, knots, crocked), if they shade the RS trees.
ii) Others species (non-Rs species) if:-
a) Deformed (broken, hollow, knots, crocked, which shade the RS seedlings; and
b) Bushy, heavy crown having diameter $<30 \mathrm{~cm}$ which is not capable of producing logs of at least 5 m in length.
2.2.2 Palm trees such as Eugeissona triste (Bertam) and Arenga westerhoutii (Langkap) which shade RS species have to be felled and poisoned, namely:-
i. Eugeissona triste (Bertam) fronds should be cut and put them in one place. Then poured the poison into it base or culm; and
ii. Arenga westerhoutii (Iangkap) and other stemmed palms should be cut whereby a small hole can be made in their trunks to facilitate poisoning.
2.2.3 Fruit trees such as Parkia speciosa (Petai), Durio zibethinus (Durian), Baccaurea spp. (Rambai), Figs (Ara), pithecellalobium bubalinum (Kerdas), Bouea spp. (Kundang), Lansium domesticum (Langsat) and Nephelium spp. (Rambutan). Bamboos (Buluh), Fern (Resam) or open area.
3.0 PREPARATION BEFORE CARRY OUT 'CL' OR 'G'
3.1 Prior to the treatment, the group leadex have to carry out reconnaisance of the study area to confirm the boundries and base lines and to determine the camping sites.
3.2 Group leaders or supervisors who will be carrying out the 'CL' or 'G', have to :-
i) To get instruction and written guidelines regarding treatment procedures to be carried out, in the
study block area;
ii) To prepare a plan of the study area (scale 1 cm : 80 cm) which shows:-
a) Study block boundries;
b) Base line;
c) Survey lines at interval 50 cm ;
d) Section of study block which is not required to be treated. This block should be marked with yellow colour.
3.3 Base lines and survey lines are used as a guide to determine treatment blocks. It is to ensure that the CL and G are carried out systematically. If the previous base and survey lines are unavailable, new lines should be established.
3.4 The frill-girdle trees should be marked on the plan according to their positions on the ground with the symbols below:-

X - RS species with diameter of $>30 \mathrm{~cm}$

+ - RS species with diameter of $<30 \mathrm{~cm}$

O - Non-RS species with diameter of $>30 \mathrm{~cm}$
\# - Non-RS species with diameter of $<30 \mathrm{~cm}$

* - Palm trees
3.5 When the treatments are completed, the group leader has to submit the data as mentioned in 3.2 (ii) and 3.4, together with the closing report and the summary of expenditure to the supervisor.
4.0 THE 'G'

4.1 The ' G ' will be implemented:-
- At a convenient height, normally at about waist height.
- Above the buttresses for the buttressed trees. If the buttress is high, the frill-girdle will be carried out
at the buttress.
- Below the irregularities of tree.
- Below the coppice stems for coppiced tree.
4.2 Instruments required :-
- Light and short-hardled axe.
- A 'parang' for small stems.
- Large gouge or chisel for the frill-girdle in corners of buttresses.
4.3 The frill-girdle cutting must be:-
- An angle of about 45° with the vertical and should not twisting or prising, when withdrawing the axe.
- Up to 1.5 cm deep of the cambium part for trees.
- Should be as horizontal as possible, so that the poison does not run along the girdle and overflow at the low points.
4.4 For species with copious latex, especially big trees, the cuts should be made wider and deeper as described in para 4.3, and two cuts or frill-girdle about 30 cm apart be made. The lower channel or girdle should be made first and the poison solution should be directed at both girdle.
4.5 Multi-stemmed strangling figs should be similarly treated (para 4.4), with the exception that all stems that can be conveniently severed should be dealt with in the same manner as for woody liana (para 2.2).
4.6 Palms with stem, such as oncosperma horrida (Bayas), Arenga westerhoutii (Langkap), etc. are poisoned by cutting, with an axe or gouge, a small hole or notch reaching in the soft pith, at 45° angle and the poison solution are then poured into the hollow.
4.7 Some stemmed palms, such as Corypha elata (Kabung), Livistona cochinchinensis (Serdang) have a very hard stem, which is difficult to notch and kill, is left untouched. However, attempts should still be made to carry out the operation, if the palms occur in abundance
and their presence are silviculturally undersirable.
4.8 Each man will be provided with a poison-can and will poison each tree as soon as it has been frill-girdle. As soon as drops of poison appear at the edges (overlaps) of the axe cuts, sufficient poison has been applied. The 'CL' and ' G ' works should be carried out during the drought season.
4.9 Besides latex producing species, other species known to be resistant to frill girdling are Ixonanthes icosandra (Pagar anak), Milletia atropurpurea (Tulang daing), Irvinqia malayana (Pauh kijang), Macaranga spp. (Kubin) and Gluta spp. (Rengas) are difficult to kill by poisoning. In this event para 4.4 is applicable.
5.0 POISON USED
5.1 The concentration of poison used is based on the types of poison. Suitable poison for this operation are as follows:-

Type Of Poison Ratio Of Mixture

Garlon $250 \quad 1$: 3
Ally (Escort 60 DF) $12.5 \mathrm{gm}: 1$ liter
5.2 For safety in handling the poison, every workers should always followed the procedure as indicated earlier.
6.0 AREAS TO BE AVOIDED FROM POISONING ACTIVITY
6.1 In the ' G ' operation, make sure that the area of 10 m wide along the primary roads, secondary roads, rivers tributaries, and valleys are free for poisoning activity. It is to avoid polluting the water courses.
7.0 POISON-GIRDLED OF TREES AND CUTTING OF LIANA (GCL) OPERATION
7.1 Poison-girdled trees and cutting of liana are a combinations of ' CL ' and ' G '. The GCL operation is the same as the operation manual for ' CL ' and :

FOW HB/S (batconent punting)	ONO 10.

A. Cexenc infcomition

real		Hourx		State		$\begin{aligned} & \text { Oiste } \\ & \text { RICT: } \end{aligned}$		forest reserve		corpartient kO.			treatmekt ко.			phitra LJME mamer		$\begin{gathered} \text { soil } \\ \text { xprafice } \end{gathered}$		Erasion	alithoe	$\left\lvert\, \begin{gathered} \text { FOREST } \\ \text { TPE } \end{gathered}\right.$				cracrs		DATE MAMTED									
		Oar	nowix		reak																																
1	2			3	6			5	8	7	3	9	10	11		13	16	15	16	$\mid 17$	${ }^{18}$	19	20	21	22	23	26	25	26	27	28	29	30	31	52	3	36

a. TREE information

TREE 40. 	SPECIES EDE			$\begin{aligned} & \text { SPEEIES } \\ & \text { HNME } \end{aligned}$	Previous () anrest														epures		
				rREE	olameter (ea)			$\underset{(\mathbf{m})}{\substack{\text { meI } \\ \hline}}$		vicone	$0 \text { TREx }$	DIAMETER (요)			aricicat (m)		v1tax				
$1 / 2$	$3 \mid 4$	5	6			7	8	9)	10.11	12	13.14	15	. 16	\|17		$\left.\right\|^{18}$	19.20	21	22.23	24	
								-		-					-		-				
	1							-		-				.	-		-				
								-		-					-		-				
	1							-		-					-		-				
								-		.					-		-				
1								.		-					-		-				
								.		-					-		-				
								\square		-	.				-		-				
								-		-					-		-				
								-		.		.			-		-				

OPERATIONAL MANUAL FOR ENRICHMENT PLANTING

1. 0 INTRODUCTION

This guideline is intended to give some description about Enrichment Planting activity under the Joint Project between Malaysia-ITTO on "Forest Management of Natural Forest in Malaysia" (logged-over forest). In this guideline, the description includes:-
i) Transportation and conditioning of seedlings;
ii) Planting;
iii) Enumeration/measurement activity; and
iv) Stock maps.

Selection of trees for planting is based on the marketable species, which is found in the forest area. In this project, the suitable species such as Shorea parvifolia (Meranti sarang punai), Shorea curtisii (Meranti seraya), Shorea Leprosula (Meranti tembaga), Dipterocarpus chartaceus (Keruing kertas), Dyera costulata (Jelutong), Endospermum malaccense (Sesendok) and Anisoptera spp (Mersawa) are selected for planting. In the nursery, the seedlings selected for planting is selected on the basis of good vigour and potential growth.
2.0 TRANSPORTATION AND CONDITIONING OF SEEDLINGS
2.1 The seedlings must be placed in closed units to prevent them from swaying, sliding or falling, during in transit in the vehicle.
2.2 The vehicle transporting the seediings should be sufficiently covered to reduce desiccation by the sun and the wind. It should also have adequate ventilation to prevent overheating within the storage chamber, due to the respiration energy of the seedlings.
2.3 Transportation of seedlings should be carried out before 10.00 am and after 5.00 pm .

2 .4 seedlings must be throughly watered prior to despatch to the planting site. At the planting site, the seedlings must be stored undershade and watered for at least two weeks before planting.

3.0 PLANTING ACTIVITIES

3.1 Planting Season

All planting should be carried out during the rainy season. Planting should be stopped, in event of three consecutive dry-spell days occuring.

3.2 Planting Distance

For this project, the planting distant is $3 \mathrm{~m} \times 10 \mathrm{~m}$ (see Diagram 1).

3.3 Planting Lines/Base Lines

3.3.1 The alignments of planting lines should be at east-west direction. This is to ensure that the planted trees will received maximum sun-shine.
3.3.2 Planting lines are laid out at 90° to the base lines and 1 m wide. Trees having diameter of less than 10 cm dbh should be cut as near as to the ground, except for RS species.
3.4 Planting Operation
3.4.1 Once the planting lines are prepared, the planting operation must be carried out immediately. Each planting spot should be marked with 1 m height stick. The planting spot need not be fixed rigidly; move the planting spot in any direction to avoid rocks, large stumps, gulleys etc. with
priority given to $1 m$ left and right of the planting lines. Similarly, if natural regeneration of the desirable species occurs anywhere within the radius of not more than 1 m around the planting spot, do not plant and treat as planted trees; space the next planting spot from there.
3.4.2 Planting holes size is 12 cm in diameter and 26 cm deep (Diagram 2). Before planting, fertilizer (rock phosphate) is applied to the planting holes at approximately 50 gm per hole.

4.0 ENUMERATION/MEASUREMENT ACTIVITY

4.1 Enumeration/measurement of seedlings after planting is carried out to determine the growth status of planted seedlings as well as natural regeneration. In addition, mortality rate can also be determined and refilling can be carried out. The sequence of such enumeration/ measurement is as follows :-
4.1.1 First enumeration/measurement is carried out after 3 months after planting. From the enumeration/measurement, the growth status and numbers of dead seedlings can be determined. However, it is necessary to carry out refilling as soon as possible (see para 3.1). At this stage, the percentage of survival should be 100% and planting lines must be cleaned.
4.1.2 second enumeration/measurement is carried out 6 months after the first enumeration/ measurement. From this enumeration/measurement, the dead seedlings must be refilled. At this stage, percentage of survival should be 100%. Crown opening and clearing of planting lines must be carried out. The non - RS species with diameter $>10 \mathrm{~cm}$ along the planting lines should be frill-girdled.
4.1.3 Third enumeration/measurement is carried out 6 months after the second enumeration/measurement. If the enumeration results show that the survival rates are less than 80%, the refilling must be carried out.

4.1.4 Fourth enumeration/measurement is carried out 12 months after the third enumeration/measurement. If survival rate of seedlings is less than 80%, refilling is carried out and this is the last refilling operation. At this stage the frillgirdle of non - RS species which shaded the seedlings must be carried out. In addition, the planting lines must be cleaned.
4.1.5 For the next 5 years, enumeration/measurement is carried out after 12 months of the last enumeration/measurement.

```
4.2 Summary of enumeration/measurement sequence are as
```

 follows:-
 SUMMARY OF ENUMERATION/MEASUREMENT SEQUENCE
 Enumeration/ Months After
 Measurement Planting Types Of Treatment
 First 3 i) Refilling (if the survival
 rate is less than 100\%).
 ii) Clearing of planting lines.
 Second 9 i) Refilling (if the survival
 rate is less than \(100 \%\)).
 ii) Clearing of planting lines.
 iii) Frill-girdle of non-RS
species which shadeds the
seedling.

Third

Fourth
i) Refilling (if the survival rate is less than 80%.
ii) Clearing of planting lines.
iii) Frill-girdle of non-RS. species which shade the planting lines.

- Enumeration/measurement for the next 5 years is carried out after 12 months of the last enumeration/measurement.
- Tending should be determined on the basis of needs, as mentioned for each of the above sequence of operation.
5.0 STOCK MAPS
5.1 The stock maps (scale $1 \mathrm{~cm}: 40 \mathrm{~cm}$) should be prepared. It should show planting lines and position of planted trees. The colour codes used are as follows:-

Colour
Remark

Green

- Planted trees; live

Yellow - Natural regeneration; live
Red - planted trees; dead
Violet - Natural regeneration; dead
Blank - Unplanted site
5.2 Prepared stock maps after every survival enumeration.

4. cakese turcourtion

rear		\%cuty		STLIE		$\begin{aligned} & \text { DIST- } \\ & 2!5 T \end{aligned}$		foress 2ESERVE		compartment $\times 0$.			TREAT- MENT но.	por		PCAHTE LJNE Hemet		sost sumpate		500sion	MITITXE	$\begin{aligned} & \text { Foxen } \\ & \text { TTPE } \end{aligned}$		$\begin{aligned} & \operatorname{sont} \\ & \pi \times \pi \end{aligned}$		canor		Qate murte												
		0									EM8																													
1	2			3	6			5	6				7	8	9	10	11	12	15	16	13	16	\| 17	18	19	20	21	22	23	26	25	26	27	28	29	30	31	22	I3	34

a. TREE !ufceraition

tree	species COOE					speetes ниме	preysaus (1989)									Curent (1990)								Remars
							$\begin{aligned} & \text { TREE } \\ & 0 \times 0 . \end{aligned}$	DINAETEP (ca)				MEIGit (ㅃ)			$\begin{aligned} & \text { vig. } \\ & o n \end{aligned}$	TREE	oranetze ($\mathbf{(1)}$				helfat (e)		$\begin{aligned} & \text { VIG } \\ & \text { ax } \end{aligned}$	
12	3	6.1	5	6			7	8	9	10	.1:	12		13.16	15	16	17	15	19	. 20	21	27.3	26	
											-			-						-		-		
											-			-						-		-		
											-			-						-		-		
											-			-						-		-		
											-			-						-		-		
											-			-						-		-		
											-			.						-		\bullet		
											-			.						\cdots		-		
											-			-						-		-		
			\because								-			-						-		-		
		$1:$					$\therefore \cdot$				-			$\because \because$						-		\cdot		
		1.									-			\because.						\bullet		- ..		-
		-									-			-						-		-		
1.		:			.-		-		.		-			\cdot	-	-				-		-		.
		-	-						-		-			-		\cdots			.	-		-		- .

PROCESSING OF.FOREST RESEARCH DATA PROCEDURE FOR DATA ENTRY

ON
"FOREST MANAGEMENT OF NATURAL FOREST IN MALAYSIA"

PROCESSING OF FOREST RESEARCH DATA

 PROCEDURE FOR DATA ENTRYby

Svend Korsgaard
(Consultant)

Management Unit
Forestry Department Headquarters
Kuala Lumpur
(Draft, June, 1992)

PROCESSING OF EOREST RESEARCH DATA

PROCEDURE FOR DATA ENTRY
by

Svend Korsgaard
(Consultant)

Table of Contents

Page :

1. Introduction 1
2. Layout of Experiments and Sampling Units 2
2.1 Layout of Experiments 2
2.2 Layout of Sampling Units. 4
3. Data Entry 5
3.1 Quadrat Information 5
3.1.1 File Name Convention for 5Quadrat Information
3.2 Tree/Pole, Sapling, Seedling and 6
Wildling Information
3.2.1 File Name Convention for Trees/Poles, 6Saplings, Seedlings and Wildlings(Plantation)
3.3 Volume Information for Felled Trees 7
APPENDIXExamples of Field Cards and Data Entry Formats 8

1. Introduction.

The background for the Joint Project between Malaysia - ITTO can be found in some of the previous reports produced by the Forestry Department Headquarters.

This paper briefly describe the procedure for entering the data from the field cards to the computer.

The format of the computer data files are designed for easy data entry. At a later stage the initial raw data files will be rearranged to be compatible with the computer processing system envisaged for implementation in 1993.

The EIIENAME conventions given are important in order to uniquely identify the data files and what type of data they contain, from which enumeration and which area.

There are tree main types of data files :

- The files containing the descriptive information for each quadrat.

Since the descriptions are the same for the quadrat irrespective of the size of trees enumerated, there is only one file per plot containing the quadrat information.

- The files containing the enumeration data for the individual trees, poles, saplings, seedlings and planted wildlings.

Since the descriptions are different for the different sizes of trees there are one file for each of Trees/poles, saplings, seedlings and planted wildlings.

- During the harvesting of trees in the Virgin forest areas the felled trees were measured for volume. These data are kept in a special file for volume calculations.

2. Layout of Experiments and Sampling Units

The detailed descriptions of the Forest study areas and the experimental layout are given in previous documents.

2.1 Layout of Experiments

There are four locations and two main types of experiments :

1) Logging intensity and plantation establishment in a virgin forest.

- H.S. Lesong, compt. 171 and 172, State of Pahang
- H.S. Sungai Lalang, compt. 50, State of Selangor

2) Silvicultural treatments and plantation establishment in a logged over forest.

- H.S. Kledang Saiong , compt. 194 and 205, State of Perak

Selectively logged in 1986 under the SMS prescriptions with cutting limits for dipterocarps $\geq 60 \mathrm{~cm} D B H$ and for nondipterocarps $\geq 45 \mathrm{~cm} \mathrm{DBH}$.

- H.S. Cherul, compt. 39, State of Terengganu

Selectively logged in 1984/85 under the SMS prescriptions with cutting limits for dipterocarps $\geq 55 \mathrm{~cm} \mathrm{DBH}$ and for nondipterocarps $\geq 50 \mathrm{~cm}$ DBH.

The treatments applied and the block numbers are :
$=$ Logginc intensity and plantation establishment in a virgin forest.

'reatment	Block Numbers H.S. Lesong	H.S. S. Lalang
) Cut all $>30 . \mathrm{cm} \mathrm{DEH}$	03,17,26,31	03,06,21,28
) Cut all $>45 \mathrm{~cm} \mathrm{DBH}$	02,07,13,29	01,07,25,29
) rut Dipt $>35 \mathrm{~cm}$ DBH Non-Dipt $>30 \mathrm{~cm}$ DBH	05,13,21,27	02,05,24,26
) Cut Dipt $>50 \mathrm{~mm} \mathrm{DEH}$ Non-Dipt $>45 \mathrm{~cm}$ DBH	04,19,30,32	12,19,22,27
) Cut Dipt $>65 \mathrm{~cm} \mathrm{DBH}$ Non-Dipt $>60 \mathrm{~cm}$ DBH	08,10,24,14	04,08,18,31
) Cut Dipt > 75 cm DBH Non-Dipt > 70 cm DBH	01,20,25,28	10,11,20,32
Cut all. $>30 \mathrm{~cm} \mathrm{DBH}$ Plantation of Wildings:	15,16,22,23	13,14,15,23
Virgin, no cutting Control	06,09,11,12	09,16,17,30

= Silvicultural treatments and plantation establishment in a logged over forest.
eatment

Climber Cutting (CL)
Girlling + CL (GCL)
GCL + Enrichment Planting (Wildlings)

Cut all > 30 cm DRH Plantation of Wildlings

Logged-over, no Treatment Control

Block Numbers
H.S. IIledang S. H.S. Cherul

02,07,08,15 01,04,12,20
$01,12,13,16 \quad 08,11,15,18$
$03,05,09,19 \quad 07,10,13,19$
$04,11,14,17 \quad 02,06,09,17$
$06,10,18,20$
$03,05,14,16$

2.2 Layout of Sampling Units.

The main Sampling Unit is the Plot of 100 m by $100 \mathrm{~m}=1$ ha located in the center of each Treatment Block.

There are 6 different layouts of Quadrats, Subplots and Planting Lines within each 1 -ha Sampling Unit :

| | Number | Type | Size | Area
 ha | Enumeration of |
| :--- | :--- | :--- | :--- | :--- | :--- | Field Card No

The Field Cards $1 A$ and $1 B$ for trees and Poles are different for
$L=$ Logging of Virgin Forest and
$S=$ Silvicultural Treatment of Logged-over Forest.
The other Field Cards are the same with regard to the individual entries for saplings, seedlings and wildlings.

Field Card 5 S for enrichment planting is only used in the Silvicultural experiment.

3. Data Entry

3.1 Quadrat Information

The Field card contain information describing the geological and ecologjcal status of each quadrat. This information is entered from the Field Cards $1 A$ or $1 B$, directly as it appears on the Field Card.
The information on the other Field Cards is the same as for Field Cards 1A and $1 B$ and is not entered.

The Field Cards for encichment planting and plantation establishment contain the date of planting. This information must be recorded in a report and not in a computer file.

The Record Length for the Quadrat Information is
For Logging : 45 bytes
For Silviculture : 60 Eytes

3.1.1 File Name Convention for Quadrat Information

It is important that the file names are unique and give the required information to identify the type and content of the data file.

The file name is 11 bytes $10 n$ and consist of 6 parts :
Bytes 1 and 2 : The Forest Reserve : LE $=$ H.S. Lesong, Pahang SL $=$ H.S. Sungai Lalang. Selangor $\mathrm{KS}=\mathrm{H} . \mathrm{S}$. Kledang Saiong, Perak $\mathrm{CH}=\mathrm{H} . \mathrm{S}$. Cherul, Terengganu
" 3 toys : The letters BLK : indicatirg the Elock muber
" 6 an 7 : The actual block numbers, For Logging : 01 to 32 For Silviculture : 01 to 20
" 8 : a Dot $=$ '.' required by Dos as a separator.
" 9 and 10: The year of enumeration : 90 or 91 etc.
" 11 : The letter ' Q ' to indicate Quadrat information file.
Example : LEBLK01.91Q : H.S. Lesong, Block 01, enumerated 1991, Quadrat Information.
KSBLK18.920 : H.S. Eledang Saiong, Block 18, enumerated 1992 guadrat Information.

The file mill contain 25 records, one record for each quadrat in the Plot.

3.2 Tree/Pole, Sapling, Seedling and Wildling Information

When the Quadrat Information is recorded, the data for the individual trees etc. is entered from the Field Cards.

Only the Treatment Number, Plot Number and Quadrat Number is entered from the "Maklumat Am" information in front of every tree record.

Layout of all the types of field cards and the data entry format is given in the Appendix.

```
3.2.1 File Name Convertion for Trees/Poles, Saplings,
    Seedlings and Wildlings (Plantation)
```

The File Name Convention is similar to that of the Quadrat Information.

It is important that the file names are unique and give the required information to identify the type and content of the data file.

The file name is 11 bytes long and consist of 6 parts :
Bytes 1 and 2 : The Forest Reserve : LE = H.S. Lesong, Pahang
SL = H.S. Sungai Lalang, Selangor
KS $=$ H.S. Kledang Saiong, Perak
$\mathrm{CH}=\mathrm{H} . \mathrm{S}$. Cherul, Terengganu

Example : SLBLK25.911 : H.S. Sungai Lalang, Block 25, Enumerated 1991, Trees.

CHPLK13.925 : H.S. Cherul, Block 13, Enumerated 1992, Wildiings, (Enrichment Planting)

3.3 Volume Information for Felled Trees

The Field Cards containing the information on the log outturn from the felled trees is entered into the computer exactly as it appears on the Field Cards.

The data will be used for volume calculations.

The File Name convention follow that given above, except that the last byte position 11 is ' V '

Example : SLBLK09.89V : H.S. Sungai Lalang, Block 09, Measured 1989, Volume information

Appendix

Examples of Field Cards and Data Entry Formats

> DATA FILE FORTAT FOR INITFAL DATA ENTRY

TREES/POLES - SELVICULTURALTREATMENT OF LOGGED-OIER FOREST"

A MANUAL FOR THE EDITING, MAINTENANCE AND TABULATION OF ENUMERATION DATA

PROCESSING OF FOREST RESEARCH DATA

A MANUAL FOR THE EDITING. MAINTENANCE AND TABULATION
 OP

JOINT PROJECT BETWEEN MALAYSIA - ITTO

ON
"FOREST MANAGEMENT OF NATURAL EOREST IN MALAYSIA"

OF
ENUMERATION DATA EROM THE ITTO - EXPERIMENTAL PLOTS
by

```
svend Korsgaard
(Consultant)
```

```
Forestry Department Headquarters
    Kuala Lumpur
        JULY, 1993
```


Table of Contents

Page :

1. Introduction 1
2. Index of Programmes 2
3. Computer Programme Instructions 5
3.1 Programmes used to Check and Rearrange 6Data from Fieldcard Veision No. 1
3.2 Programmes for File Listings 9and Preparations for editing
3.3 Programmes for Data File Editing 13
3.4 Programmes for File Corrections 18
3.5 Programmes for the Production of 23Tables
3.6 Programmes for the production of 40Growth and yield Tables
3.7 The Nood Quality Groups (for output) 49
4. Support Data Files 50
5. Standtable Projection Simulation Model 51
Appendix I Examples of printed output 52
I. 1 ITCHRAW : Part of Listing Raw Datafile 52 Information Erom Fieldcard Version no. 1.
I. 2 ITSPLIT : Part of Listing Information from 53 Splitting Raw Datafile from Fieldcard Version no. 1.
I. 3 ITLIST : Part of a Main datafile. 54
I.4.1 ITLSFILE : Part of a Main datafile. 55
4.2 - \quad - Example of Quadrat Information. 56
I. 5 ITLSBLCK : A Treatment, Block, no. of 57 Quadrats List.
I. 6 ITQUCHCK : Part of a Clean Quadrat list. 58
I. 7 ITEDIT : An Edit List. 59
I. 8 ITECL : Part of a List of Forest Classes. 60
(Not yet adapted)
I. 9 ITSIC : A List of Stem Identity Classes. 60

Page

I. 10 ITTABSTD : A Stand Table, Number of Trees. 61

- " Basal Area. 62
I. 11 ITTABSTD : A Stand Table, Volume. 63
I. 12 ITTABWQS : A Stand Table by Species. 64
I.13.1 ITTABSAP: A Stand Table, Saplings. 65
13.2 - " - Height Table for Wildlings. 66
I. 14 ITHEIGHT: A Table of Number of Logs. 67
I. 15 ITSPSUM : Part of the Species Summary. 68
I. 16 ITGROEDT: List of Inconsistencies and 69 "New Recruits".
I. 17 ITGROWTH: A Growth Table. 70
I. 18 ITINGROW: An Ingrowth Table. 72
I. 19 ITGRORAT : A Table of Growth Rates. 73
I. 20 ITSELECT : Documentation of Output. 74
Appendix IJ : Listing of Support Data Files. 75
II. 1 List of Forest Classes, FDAECL.DAT. 76 (Not yet adapted)
II. 2 List of Stem Identity Classes, ITSICTXT.DAT. 76
ITSICTX2.DAT. 76
II. 3 Species List, SPECIES.DAT. 77
IT. 4 Example of Command File, ECOMSTD.DAT. 87
II. 5 List of forest Locations, EORRESV.DAT. 87
II. 6 List of Treatments Applied, TABTREA.DAT. 87
II. 7 List of Dates of Enumeration, PIDATES.DAT. 88
II. 8 Example of Filenames and Enumerated Area 88ITSPSUM.DAT.
Appendix III : List of Treatments and Block Numbers by 89 Research Area.
Appendix r : The Fieldaards Version No. 2, 190\%. 91
Appendix V : Layout of the Data-iiles Incorporating 96 Fieldcards Version No. 1 and 2 .
Appendix VI : References.97

1. Introduction.

This manual is specifically designed to provide the necessary instructions to run the data proceseing programmes to edit, correct and tabulate the enumeration data collected in tie four ITTO permanent plots (Sungei Lalang PR., Selangor State; Lesong FR., Pahang State; Kledang Saiong FR., Perak State and Cherul $F R$. Terengganu State.); the plot established in Piah RR., Perak State which utilizes the same layout and method of enumeration.

The layout of the plots, the description of the treatments applied and the initial schedule of enumerations are given in two papers by the Forestry Department Headquarters :

- "Procedure for Establishment of Study Area in Virgin forest"
- "Procedure for Establishment of Study Area in Logged-over Forest" (Forest Dept., 1993 a and b.)

The instructions for the field enumerations are similarly given in two papers for the two types of experiments (Forest Dept,. 1990 and 1991).

During the ITro consultancy in Data Processing from April to July 1993, it was suggested, and subsequently accepted by the Technical Working Group of The Department, to introduce some enhancements to the enumerations and to change the layout of the field form (Korsgaard, 1993 a). The enhancements will provide for a more detailed description of the status of the individual trees and the status of the surrounding forest. The changes to the layout of the field form will cater for the enhanced codes as well as making it simpler to imput the data directly for computer processing. The complete system of cnumeration is documented in Korsgaard 1993 b.

The system of enumeration and the manuals of instructions are based on similar manuals prepared by the FAO projedt UNDP/FAO/MAL/89/001 "Eorest Inventory and Management Systems as Part of Forest Resources Conservation Programme", (Korsgaard, 1992 a and b).

Copies of version no. 2 of the field forms are given in Appendix IV.
In the index of programmes below, the first two programmes are required in order to convert the "old" data, as enumerated according to the initial version of the field card, into a format compatible with the "new", enhanced version. In this way, the same programmes can be used, and full compatibility assured, for the two versions of the erumerations.

A flowchart outlining the sequence of the procedures and the linkages between programmes and files is given in a separate paper : Field Document 2.2 "Elowcart for Computer Erocessing of the ITTO Experimental Plots"
2. Index of Erogrammes.
Programme name Function Page:

		FIELDCARD VERSION 1. 1990-93	
ITCHRAN	FOR	Cheok raw datafile organization.	6
ITSELIT	FOR	Split raw datafiles into five separate files: Quadrats, Trees/ Poles, Saplings, seedlings and Wildings.	7
		ALL EILES 1990 -	
		Listing and misc. Programmes :	
ITCRTSRP	FOR	Create a small testfile. Used in programme development.	9
ITLIST	FOR	Make a listing of any ASCIT file, on screen, printer or datafile.	9
ITLSEILE	FOR	Make a printed list of the datafile containing field enumerations.	11
ITLINO	FOR	Insert record number in datafiles.	12

Editing programmes :

ITLSELCK	FOR	List the treatment and block numbers and the number of quadrats.	13
ITQDRNEW	FOR	Create a correct list of treatment no. block no. and number of quadrats for use by ITQUCHCK.	14
ITQUCHCK	FOR	Check the correct sequence of quadrats, check stocking and forest class codes and tree numbers.	16
ITEDIT	FOR	The main editing programme for line by line checking and error listing.	17

Correction programmes :

ITINDEX	POR	Create a key indez to a datafile. Used by ITCORR, ITGROWTH anc IPGRORAT	18
ITCORR	FOR	The main error correction program.	18
ITCHCKLN	FOR	List records (trees) corresponding to certain checks.	21
ITMASCOR	FOR	Correct systematic errors or changes in a datafile.	22
		Programmes for Production of Tables :	
FDFCLQNO	FOR	Produce table of Forest Classes. (Not yet adapted).	23
ITSIC FOR		Produce table of Stem Identity Classes.	24
ITTABSTD	EOR	Produce general and special stand tables by variables (not by species).	25
ITTABVQS	FOR	stand tables by species.	30
ITTABSAP	FOR	Stand tables for poles, saplings and seedlings.	34
ITHETGHT	FOR	Table of tree heights by diameter class.	37
ITSPSUM	FOR	Summary table of number of species encountered in a collection of datafiles.	38

Programmes for Growth and Yicld.

ITGROEDT FOR	Check up to 5 different enumerations of the same plot for inconsistencies.
ITGROWTH FOR	The main growth programme giving diameter increments, basal area increment and mortality.
ITGRORAT FOR	Tabulates diameter increments by growth rate.
ITINGROW FOR	Tabulates ingrovth (new recruits).
ITSELECT FOR	Select variables to be analyzed by statistical programme package.
	Standtable Projections
STANDPRO FOR	The standtable projection Simulation Model, 1993 version.

This section gives the instructions on how to use the individual programmes to edit the datafiles and prepare then for production running.

The field andes must first be thoroughly ohecked manually according to the "hanual of Instructions for mamerating the Permanent ITTo Experimental Plots" (Korsgaard, S., ITTO PD $10 / 87$ (F), Field Document No. 1, July, 1993).

When the field cards have been checked and ordered, the data is entered into the computer. The data entry process can be done either at the Forestry Department or by a contracted company.

It is important that the data entry is verified by having the data entered twice by two independent keyboard operators where any discrepancies are immediately rectified.

The layout of the datafiles must follow exactly the layout of the field cards. The first fev programmes given below are used to check that the datafiles are in morking order subsequent to the data entry procedure. Since tro sets of fieldcards are used, the first two srogrammes below are used to bring data entered from fieldcard Version No. 1 to the sene datafile format as the data entered directly from Fieldcard Version No. 2.
3.1 Programmes used to Cheok and Rearrange Data from Fieldeard Version No. 1.

ITCHRAW. FOR

This programme is used to check the contents and order of the rav datafiles before any further processing is attempted. The programme lists:

- Year of enumeration
- Month - " -
- Compartment no.
- Treatment no.
- Block no.
- Quadrat no. and
- Number of entries (trees, saplings etc.) per quadrat.

The progirame will print a message each time any of the above variables changes. As the datafiles are supposed to be entered one block at a time, only the guadrat number should change.

In order to ascertain the correct function of the next programme, ITSPLIT, it is important that the sequence of the guadrats is sorted in ascending order from 1 to 43 in all bloc except for plantation blocke mhere the orier is from 1 to 17 a enrichment planting mlocks where the order is from 1 to 10.

The year may change from f.ex 91 to 92 piovided the month changes from 11 to 01 indioating that the enumeration stretche over the new year period. othervise the month may change from to 11 or from 03 to oz indicating that the emmeration stretch over tro months. Phe compartment may alea change in the cases Where the field crews note that a blocis axosees a compartment boundary.

NOTE:
It must be stressed that for the purpose of the experimen the compartment boundary is irrelevant and any reference the data to the compartment no. must be ignored. (This ha caused some confusion during initial data entry).

If treatment and block change, it indicates an error.
Check carefully that all quadrats are present and correctly sorted before proceeding.

The programme vill request the filename for checking and the devise for listing, usually the lineprincer (PRN).

ITSPLIT. EOR

This programme is used to split the raw datailies entered from Fieldcard Version 1. into separate files acoording to the format used in Fieldcard Version 2. and a separate file containing the Quadrat information.

There are three main types of files:

- Logging in Virgin forest: (Quadrat info $=45$ bytes)
$\begin{array}{lccccc}\text { - Trees/Poles: } & \text { Record Length : } 45+25=70 \text { bytes } \\ \text { - Saplings } & \text { " } & 45+22=67\end{array}$
$\begin{array}{lllll}\text { - Saplings } & : & : 45+22=67 \\ \text { - Seedlings } & : & : 45+7=52\end{array}$
- Silvicultural treatment of Logged-over forest:
(Quadrat info $=60$ bytes)

- Seedlings : " " : \quad " 0 + $7=67$ "
- Plantation / Enrichment Elanting:
(Quadrat info $=34$ bytes)
- Wildlings : Pecord Length : $34+24=58$ bytes

The files are split into 3 types of quadiat information files with record length given above, and 4 types of enumeration files:

- Trees/Poles

Record Length	$:$	40 bytes	
$"$	$"$	$:$	33 bytes
$"$	$"$	$:$	27 bytes
$"$	$"$	$:$	40 bytes

The program also checks the species code and assign the wood Quality Group (WQG) and the Stem Identity Class (SIC) (see Korsgaard, 1993). Ir some cases where 'present' enumeration information is missing, the information is transferred from 'previous' enumeration.

The filename for the split files is constructed as follows: The part of the filename preceding the "point" '. ' is maintained, the extension folloving the '. contain the year of enumeration from the first record of the un-split file for trees,poles, saplings, seeding and wildings respectively. It is therefore important to check the output from ITCHRAW to make sure that the years are correct.

The last digit is used to identify what the file contains:

- Quadrat information : ---------- - Q
- Trees/poles : --...-....--1
- Saplings : --....-.-...... 2
- Seedings : --..-----.-. - 3
- Planted Wildiings : --....-....--4

A valid filename after the split is performed may be : LESO193.93Q for quadrat information or KSBTiRO1.921 for trees

A printed report provides information on the quadrat numbers a: the number of trees transferred as well as a few error comment like: illegal stem Identity Class or species Code not found. These errors will also be picked up by the edit programme ITED described below.

The programme asks for filename to split and asks if the file has been properly checked by running the ITCHRAW programme fir and if the necessary corrections has been made.

When the individual blocks have been split successfully they must be joined together to form the complete datafile by treatment. This is best done by the DOS COPY command. F. ex. treatment 01 in Sungei Lalang consist of the 4 blocks $3,6,21$ and 28. The following command mill make up the tree/pole file SLTMT01.921:

COPY SLBLK03.921+SLBLKOG.921+SLBLK21.921+SLBLK28.921 SLYMTO1.921
The filenaming conventions are :
-- First two letters : Location name,
$S L=$ Sungei Lalang, $L E=$ Lesong, $P I=P i a h$
$K S=$ Kledang Saiong, CH $=$ Cherul

- The next three letters are TMT : Treatment
- The next two digits are the treatments applied :

```
0.1 = CUT ALL > = 30 ©H
02 = CUT ALL > = 45 CM
03 = CUT DIPT>=35/ NON-DIP.>=30 CM
OA=CUT DIPT>=50/ NOH-DIP.>=45 CH
05=CUT DIPT>=65/ NON-DIP.>=60 CLS
06 = CUT DIPT> =75/ NON-DIP. }==70\textrm{CN
07 = CUT ALI>=30 CM/PLANT WITDLING
O& = NO LOGGIMG, VIRGIN CONTROL
11 = CLIMBER CUTTING (CL)
12 = GIRDLING + CLIMEER CUTTING (GCL)
13 = GCI (+ EMPICHMENT PLPNTING)
14 = CUT ALLS=30 CM/REANT NILDLING
15 = CONTROL, LOGGRD, NOT TREATED
16 = ENPICHMENT FLANTING
```

3.2 Frogrames for File Listings and preparations for Editing

ITCRTSRF.FOR :
This programe is used to create a small testaile from a main data file. This is useful for ohecking that the files after data entry are in the proper fomat.
A small test file is also useful during programme development when errors in the programe may damage the data file.

Input : A main data file containing trees, poles/saplings or seedlings.

Commands :
CREATE A SMALL TESTRILE. FILENAMG=
Give the reguired filename.
HOW MANY LJNES ?
Give the number of lines needed. f. ex. 100.
Output : A testfile with filename beginning with TS....
Copy the testfile to the reguired directory where needed.

ITLTET. FOR :

This programme is used to list data files on the screen or on paper or to a nev disk file.

Use this programe to list the data file on the screen to check that the file is in good working order and that the record length is correct and that the variables are in the right columns.

In case of serious problems check with those who did the data entry and check that the instructions were followed.

The programme will list any ASCII (DOS) datafile.
Input : Any ASCII datafile.
Commands :
THIS PROGRAM LIST ASCII-FIIES
GIVE FILENAME :

```
Give the filename.
```

```
GIVE TOTAL RECORD LENGTH :
    Give the record length of the deta file if known. Els
    give the length as 76 so the output will fill the
    screen and count the record length from there.
GIVE LENGTH OF CODE NUMBER :
    Give the length of the code number if used. For the
    species list it is 5 digits. Else give 0 if a code
    number is not included.
GIVE SIZE OF DESCRIPTION :
    Give the number of bytes for the rest of the record.
    For the species list it is 61. Else give the size
    equal to the total record length.
LISTING ON SCREEN = 1
LISTING ON PAPER = 2
NEW DISKFILE = 3
    Answer as appropriate.
    When the screen is full this command appear :
TO CONTINUE = 1 FINTSH = 2
    Answer as appropriate.
    When a list to a nev diskfile is requested the
    filename must be given :
GIVE NEW FILENAME ;
    Give the filename of a new file.
    When the listing is finished this question appears :
ANOTHER LIST = 1
ANOTHER FILE = 2
EINISH = 3
    Answer as appropriate.
Output : A list of the file on the screen or
        a list of the file on the line printer or
        a new disk file.
```

```
ITLSFILE.EOR :
```

This programme is used to produce a hard copy listing of the data files on paper (A4) for checking and aefekeeping. It can also be useful during editing then unexpected exrors occur like when codes are keyed in the wrong columns.

This is the only programme that tabulates the quadrat information. There is no checking on the quadrat file, this must be done manually. Statistical programme packages can then be used to make frequency distributions, means etc. of the information as required.

Input : A main data file, quadrats, trees, saplings, seedings or wildlings.
: The species list, SPECIES.DAT
Commands :
THERE ARE 4 TYPES OF DATA FILES AND 3 TYPES OF QUADRAT FILES :

DATA EILE FOR TREES/POLES $=1$
DATA EILE FOR SARLINGS $=2$
DATA FILE FOR SEEDLINGS $=3$ DATA FILE FOR PLANTED WILDLTNGS $=4$

QUADRAT FILE FOR LOGGING IN VIRGIN FOREST = 5
QUADRAT FILE EOR SILV, TRMT. OF LOGGED FOREST = 6 QUADRAT FILE EOR ELANTATTON/ENRICHMENT PLOTS $=7$:

Give the number corresponding to the type of file to be listed.

INPUT FILENAME FOR LISTING:
Give the file name.
Output : A printed list of every record in the file.

ITLINO.FOR :

This programme inserts a consecutive record number in the first 5 bytes of each record in the main data files (trees/poles, saplings, seedlings or wildlings).

When, during editing, records or blocks of records (like misplaced quadrats, trees etc.) have been moved or deleted, remember to renumber the data file by running this program before continuing work on the data file.

Input : A main data file.
Command :

INPUT EILENAME : (EX : SLTMT05.921)
Give the filename.
Output : A renumbered main datafile, filename unchanged.
3.3 Programmes for Data File Editing.

Having made sure that the file is properly organized and that record numbers are inserted, the file is ready for the editing process.

The editing process consists of a number of steps to check errors of different kinds in the file. The procedure has been developed through "trial and error the hard way" since 1978 and has now proven very efficient to detect some very tricky errors usually overlooked by normal "one-pass" edit programmes.

It is important to do one step at a time and to ensure that all errors listed are properly checked against the field cards and corrected as required before proceeding to the next step.

ITLSBELCK.FOR :

This is the very important first edit check.
The programme list the number of quadrats per block per treatment.

IMPORTANT : Any discrepancies in number of cuadrats must be checked, f.ex. by ITQUCHCK, and corrected before editing continues. Refer to Appendix ITI Eor a list of treatments and corresponding block numbers per research area.

The errors may be due to the file not being properly organized or the columns being shifted in the middle of the file, or the field crew forgot to fill the code.

Check that the blocks are listed in the correct ascending order.
Input : A main data file, trees/poles, saplings or seedlings.

Command:

INPUT FILENAME: (FX: SLTMTO4.921)
Give the filename

Output : A printed list giving treatment no., the block numbers and the number of quadrats.

ITQDRNER.ROR :
This programe is used during initial editing after ITLSBLCK, When the number of quadrats per block per treatment is correct. The programme creates a file containing the treatment no., bloc no. and quadrat no. in correct sorted sequence for use by the ITQUCHCK programme.

NOTE : This programe uses three filenanes to contain the output. There are 3 eptions:-

Filename

```
- layout for trees/poles and wildlings *******.QTR
- layout for saplings *******.QSA
- layout for seedlings *******.QSE
```

As this programme creates quadrat lists for several types of layouts it is important to have a clear and correct idea of the layout and numbering system of the treatments, blocks and quadrats/planting lines before running the programme. Use ITLIS to list the result to check that the numbers and their sequence is correct.

Input : There is no input file
Commands :
>>> ITQDRNEN<<<<<cer
THIS PROGRAM CREATES A TRITR-BLK-QDR/LINE -EILE
PLOT LAYOUT FOR TREES/FOLES/WILDLINGS $=1$
LAYOUT FOR SAPLING SURPLOTS $=2$
OR LAYOUT FOR SEEDLIVG SUBPLOTS $=3$:
Give number corresponding to the layout.
GIVE FILENAME FOR TREATMENT PLOT (NO EXTENSION) F.ex.: SLTMT01 :

Give the filename.
HOW ARE THE QUADRATS ARRANGED :
CONSECUTIVELY (IN SQUARE PLOTS OR PLANT. LINES) $=1$
INDIVIDUALLY (LIKE SAPL./SEEDL. SUBPLOTS) $=2$:
For trees/poles and for the plantation and enrichment planting plots the block contain either 25 quadrats c 17 or 10 planting lines respectively.

The saplings and seedlings are enumerated in 9 central quadrats and has the cuadrat numbers from 26 to 34 and from 35 to 43 respectively.

Give the number (1 or 2) as required.
GIVE THE NUMEER OF QUADRATS/PLAMP LINES :
TREE/POLES HAS 25 QUADRATS PER PLOT
PLANT. LINES EITHER 17 OR 10 EINES :
Answer as appropriate.

- Section creating quadrat file for tree/poles and wildings:

GIVE TREATMENT NO AND FIRST BLOCK NO
EX. SLTMTO2: 2, 01
Refer to Appendix III to find the block numbers per treatment and check with the output from ITLSBLCK.

ARE THERE MORE BLKS (Y/N) ?
(YES, USUALLY MORE F.EX.: $B L O C K=02,13,21, ~ E T C$)
Answer Y or N as required

GIVE NEXT BLOCK NUMBER :
Give only one block number at a time.

- Section creating quadrat file for the subplots:

GIVE THE FIRST AND LAST SUBPLOT NOS:
FX. SLTMTO 3 SAPL : 26,34 OR SBEDL : 35,43)
Give the subplot quadrat numbers.
GIVE TREATMENT NO AND FIRST BLOCK NO
FX. SLTMTO2: 2,01
Refer to Appendix III to find the block numbers per treatment and check with the output from ITLSBLCK.

ARE THERE MORE BLKS (Y/N) ?
(YES, USUALLY MORE F.ex.: BLOCK= 02, 13, 21, ETC)
Answer Y or N as required
GIVE NEXT BLOCK NUMBER :
Give only one block number at a time.

Output : An internal diskfile containing a correct list of treatment no., block numbers and quadrat/plant line numbers.

YOUR TRMT/BLK/QDR FILE IS NAMED : (f.ex SLTMTO1.QTR)
DO YOU WISH TO CREATE ANOTHER QUAD. EILE (Y/N) To continue with another creation or stop.

ITQUCHCK.FOR :

This programme is the very important next step in the editing process. The program checks that all quadrats are present in the correct sorted sequence and that, within each quadrat, ever tree number occur only once, and that empty quadrats contain only one record with the correct stocking code. It is also checked that the forest class does not change in the middle of quadrat.

The programme detects very tricky errors involving double tree numbers, duplicated records and cases where two forest classes are found in the same quadrat, which may - in fact - be due to incorrect quadrat numbering or fieldcards misplaced during data entry. These and other errors are very difficult to detect otherwise and they have previously given serious trouble when running the ITGROWTH program.

Input : A main data file, trees/poles, saplings or seedlings.

Command :
INPUT FILENAME: (FX.: SLTMTO1.921)
Give filename as required.

Output : A printed list containing a list of all the quadrat in the data file indicating errors if any and a list of missing quadrats, and a list of all records in quadrats where errors are found.

NOTE : It is very important that all errors are checked and corrected before editing continues, Rerun the ITQUCHCK programr until no more errors are listed, and a clean quadrat list is printed.

ITEDIT.FOR :

This programme is the main editing and erior checking programme for nev data from the field. Run this progran after the codes have been updated and the guadrats have been checked. It will produce a list of illegal codes: codes not found and other inconsistencies in the file. Some errors listed must be corrected whereas other errors or inconsistencies cannot be corrected or do no harm.

After correction, remun the ITEDIT programme to check for remaining errors.

Input : A main data file, trees/poles, saplings or seedlings.

Command :
INPUT FILENAME : EX. SLTMTO3.921
Give filename.
There are two different types of plots, 'Logging in Virgin Forest' and 'Silvicultural Treatment of Logged-over Forest'. Since some of the variables scored differ in the two different sets of data, it is required to give the information as to which data set needs editing:

$$
\text { LOGGING OF VIRGTN FOREST }=1
$$

SILV. TRMT OF LOGGED OVER FOREST $=2$:
Answer as appropriate.
Output : A printed list of all the records that need to be checked, with a message of the possible error. However, the actual error may not be the one flagged, but may lay elsewhere in the record. Check against the fieldcards also from previous years and use the imagination.

NOTE : It might be necessary to change or update this programme if the instructions or the variables are changed for new enumerations.

3.4 Programmes for File Corrections

ITINDEX.FOR :

This programme is used to create an index-file to a main data file containing, treatment no., blcok no., quadrat number and start record for each quadrat in the main data file. The index file XQ*****.*** is used by ITGROWTH, ITGRORAT and ITCORR.

NOTE : Before running this programme the file must be properly numbered by the ITLINO programme, as the index gives the start record of each quadrat in the file.

Input : A main data file.
Command :
INPUT FILENAME: (EX: SLTMT03.921)
Give file name.
Output : An indexfile XQ... to a main data file, where ... the remainder of the filename taken from the main da file.

ITCORR. FOR :

This programme is used to make error corrections in the data files during editing. It will normally work on a record by record basis, but it is also possible to look for a treatment/ block/quadrat number to list all records of a quadrat for checking.

Try the programme on a test file first to get acquainted with how it works as the programme replaces the erroneous records i the datafile with the corrected record. For treatment/block/ quadrat access mode the index Eile XQ --- to a data file is required, see program ITINDEX above.

Input : A main data file, trees/poles, saplings or seedlings.
: The corresponding index file XQ---
Commands :
OPTIONS :
CORRECTION WORK $=1$
DELETE MARKED RECORDS $=2$
For normal correction work select option $=1$.
To delete records already marked for deletion, selec option $=2$.

GIVE FIIENAME :

Give filename

```
GIVE ACCESS MODE :
    RECORD NUMBER =1
OR TRMT/BLK/QUAD = 2
```

If the nork only requires record by record correction select access mode $=$?
However, if it is needed to list a whole quadrat to check forest classes or tree numbers etc. then select access mode $=2$. When access mode $=2$ is selected, the XQ --- file must exist.

Having selected mode of access the actions to be taken are requested :

ACTION:
FINISH $=0,0$
IITST RECORD $=L N, 1$
CORRECTION $=\mathrm{LN}, 2$
SAME CORRECTION $=\mathrm{LN}, 3$
LIST QUADRAT $=0,4$
MARK RECORD DELETE $=L N, 5$
GIVE : RECORD-NUMBER (LN), ACTION
For corrections select action : LN, 2
For example if record 5 needs to be corrected answer : 5,2

The line je listed :
000051435010100201111643000225141121
GIVE : START-BYTE, END-BYTE, 'CORRECT-STRING'
For example to correct an error in species code, column 24 to 26 :

24,26,'203'
000051435010100201111642030225141121
If the same correction is needed in other records for example the species code in record 10 has the same error as no. 5, then give : 14,3

000141225010100502111643000102075221
000141225010100502111642030102075221
To delete mecorte, the record is first marked delete by action : LN, 5 :

The word DELETE is inserted in the record. When all records have been marked for deletion give action 0,0 to finish and then the following options are given :

```
CHANGE MODE OF ACCESS = 1
    ANOTHER OPTTON = 2
    ANOTHER FILE = 3
    END OF SESSION = 4
```

```
Select ANOTHER OPTION = 2 and select
DELETE MARIKED RECORDS = 2
```

The file is read through and the records not marked
delete are transferred to a new file.
When that is done use DOS to delete the original file
and then rename the new file to the original filename.
Then rerun the ITLINO and ITINDEX programmes.

When ACCESS MODE : TRMT/BLK/QUAD = 2 is selected, it is possible to list a whole quadrat to check for errors affecting other records in the quadrat like Forest Class errors by selecting

ACTION :
LIST QUADRAT $=0,4$
The command 0,4 will result in this question
GIVE TRMT,BLK, QUAD NULBER :

For ex. to list quadrat 14 in block 3 of treatment 1 give :
$1,3,14$
The quadrat is listed :

003461423010301401111751010165054111
003471423010301402111718020262104222
003481423010301403111891020185065211
$003491532010301404111700000122083321<--$ error in FCL
003501423010301405111751010182084312
003511423010301406413900120100000000
003521423010301407413900120100000000

ANOTHER QUADRAT $=1$, CORRECTIVE ACTION $=2$
Answer 1 to list another quadrat or 2 if there are errors to be corrected, the list of ACTIONS will appear.

To finish the exror correction session give ACTION :
FINISH $=0,0$

The answer 0,0 will make the commands given under delete record above appear. Select :

END OF SESSION $=4$

Output : A main data file, hopefully with less errors inside than when the session was started.

ITCHCKLN. FOR :

This programme is used to find tyees that correspond to certain requirements and list them on the screen for checking. It can be useful to make this listing before attempting to correct systematic errors using ITHAscor, see below.

Input : A main data file.
Commands :
ETRST CHECK, GIVE :
START BYTE, END BY゙F, 'CHECK STRTMG'
Answer f.ex. 20, 22, '134' that is : look for all. occurrences of stem Identity Ciass '134' (cut stumps).

SECOND CHECK, GIVE.
START BYTE, END BTTR, 'CHECE BTRTMG'
Answer f. Ex. $32,32, \quad$ oo' that is: bole height is o m.

FOR SECOND CHECK, GIVR RELATION
. LT. $=1, \cdot E Q .=2 ; . G_{2}=3:$
Answer f.ex. 3.

Output
: In this example, the programme will list, on the screen, all cocuriences of cut stumps having bole height of mose than 0 meters, i.e. for cut stumps bole heights axe not measured, but if so, there is most likely an error in the stem Identity class.

The programme is mainly used duxing editing.

ITMASCOR.FOR
This programme is used when a unique code has to be changed to another code throughout a file. mis can be particularly usefu: for species codes.
When in doubt run the ITCHCELV programme (see above) to check that only those codes that require change are listed.

Input : A main data file.
Command :
GIVE : START-BYTE, END-BYTE, 'OLD-STRING','NEW STRING'
F.ex. change sp. code 70605 to 60605 give :

23,27,'70605'.'606Q5'
Output : The change is done throughout the file.
This programme is mainly used during editing and when it has been decided to make a general change of a code, like a species being assigned another Wood Quality Group.
3.5 Programmes for the Production of Tabless

When editing is completed there are a number of programmes used to produce different kinds of tables sumazizing the data :

FDFCLQHO (ITRCL).FOR :

This programme make an output table of the number of forest Classes found, the percentage asstribution and the description of the Forest Class. The programme check for illegal Forest Classes and change of Forest class in the middle of a quadrat. The programme is used once per data file immediately before the file is finally edited and released for production running. Same for ITSIC.

Input : A main data file.
Commands :
INPUT EILENAME (FKZ. SITMTO1.931)
Give the filename.

WHICH BLOCK ?
$\quad \mathrm{LL}$ BLOCKS $=0$
OR BLOCK NO :
Answer as appropriate.
For statistical analysis it is sometimes required to get the variation within the area in which case each block neede to be listed separately.
output.
: A printed list giving a summary of the Forest Classes.
(Note : this programme is not yet adapted, as the version 1 of the field card does not contain a score for Forest class.)

ITSIC.EOR :
This programme counts the number of stems for each stem Identi Class and makes a list of every class encountered. The program also checks for illegal Stem Icentity Classes.
Like ITFCL, this programme is run immediately before the editi is finished.

Input : A main data file.
Commands :
INPUT EILENAME: (FX. SLTMT06.921)
Give the file name.

The two types of output tables, Forest Classes and stem Identity classes, are useful in providing an overview of what the file contains and for guiding detailed studies of forest Classes and Stem Identity Classes later on.

This jis the standard programe for tabulating trees according to various specifications.
In order to ease the interactive communication defining the table, when many similar tables are produced from several data files, it is possible to keep the commands in a small file called FCOMSTD.DAT. Use DOS EDTP or any other editor to update. An example is given in the $A p p e n d i x$.

Input : A main data file, trees only.
: A species list f.ex. sPECIES.DAT, if needed.
: The file containing the plot location names
: FORRESV.DAT.
: The file containing the treatments : TABTREA.DAT
: The command file rConstd. DAT if needed.
Commands :
COMMANDS FROM KEYBOARD $=5$
OR FROM FILE FCOMSTD.DAT $=4$
Then the data filename is requested :
INPUT FILENAME: (FX. SLTMTO2.921)
Then comes the interactive session defining the standtable to be produced :

MAX. NUMBER OF BLOCRS (BLCK)	$=a$
FOREST CLASSES (FCL)	
STEM IDENTITY CLASSES (SIC)	$=10$
	$=10$.

FOR MEAN/SUMMARY OR ALL CLASSES ANSWER : 0
GIVE The NUMBER OF : BLCK, FCL, SIC
EX: 0,0,1

When 0.0 .0 is selected the table will contain the combined average for all blocks, all Forest Classes and all stem Identity classes.

When 1 or another rumber is selected the table will contain the average of only those blocks or classes specified below.

In the example (0,0,1) all blocks and all Forest Classes are included but only one sten Identity class will be included.

If block number is requested :
GIVE THE BLOCK NUMBERS : EX. 2,3,4
In this example the table will be the average of blocks 2, 3 and 4 .

If the Forest class is selected, it is possible to get a table for a combination of individual forest classes (maximum is 10) or a number of Main forest Classes :

```
USE INDIVIDUAL ECL"S LIKE 432,434,532,533, ETC = 1
```

OR USE MAIN FCL"S LIKE 100,200,300, ETC $=2$:

Answer as appropriate, then :
GIVE THE FOREST CLASS CODES (MAX= AVERAGE OF 10) F.ex. $100,200,300$ OR $432,434,532,533:$

Give the codes.
If the Stem Identity class is selected :
GIVE THE STEM IDENTITY CODES (MAX= AVERAGE OF 10) F. EX. : 111 OR 114,124,134,144

If, as an example $S I C=111$ is selected, the table will contain information on living standing complete trees only.

The diameter class interval and the minimum diameter is seleated as needed. There are 11 diameter classes in the output table.

GIVE THE LOWEST DIAMETER, G CLASS IHTERVAI IH MM. F. EX. : 100,50 OR 150,150

If the answer is 100,100 the minimum diameter is 10 cm and the diameter class interval is 10 cm , and consequently the uppea diameter class iss $110+\mathrm{cm}$.

For the analysis of the various paraneters measured, it is possible to get special output where one parameter takes the rows (horizontaliy) of the table and another parameter is given page by page. The diameter classes are almays fixed as 11 columns.

```
CHOOSE TWO OF THE FOLIOWING - HORIZONTAZ AND PAGE VARIABLE
LOG QUALITY =
CROP TREE STATUS == 2
CROWN FORM = 3
CROWN DOMINANCE = 4
STGM DAMAGE = 5
CROWN DAMAGE =6
EFFECT OF CLIMBERS = 7
WOOD QUALITY = &
NO PAGE VARIABLE =9
```

Answer f.ex : 8,9
For normal table output the Wood Quality Group $=8$ by row is selected, the page variable is not used $=9$

If, for example, the table should show the correlation between crown dominance and crown form the following options are given :

3,4
That will give one page for each crown form with the rows being the crown dominance classes.

The codes for which output is vanted is given next in two steps, first give how many code numbers and then the actual codes to be included :

GIVE THE NUMBER OF CLASSES FOR EACH VARIABLE SELECTED

In the first example it will be :
8,0
i.e. one row for each wood quality gioup, and nothing for the pages.

In the second example it will be :
4, 5
Then the actual codes are given :
GIVE THE CODES FOR HORIZONTAL VARIABLE
F.ex: $1,2,3,4,5,6,7,8$
or: $1,2,3,4$
And similarly:

GIVE THE CODES FOR PAGE VARIABLE

$$
\text { F.ex: } 1,2,3,4,5
$$

ANY SPECIES CHECK REQUIRED ?
(NO CHECK $=0$, SPECIES.DAT $=1$, OTHER LIST $=2$)

It is possible, for special investigations, to provide a list of species (genera) for which an output table is needed, it may f.ez. be the occurrence of fruit bearing trees for wild-life. In this case the list is made up using an editor programme and the filename for that species list supplied.

GIVE SPECIES LIST FILENAME :
For normal running, when all species are needed, no checks are required. Selecting the full species list (SPECIES.DAT) gives an additional check on the validity of the species codes in the file.

It is possible to produce the output table for either:
a) number of stems per ha and basal area per ha or b) volume in m3 per ha and the number of stems included in the volume calculations.

TABLES FOR :
NUMBER OF STEMS AND BASAL AREA $=1$

- " \quad RND VOLUME $=2$

If output is selected for volume, there are two volume functions applied. The first function is based on quadratic diameter at breast height (DBHOb) alone and is used when heights have not been measured. The second function is based on both dianeter and height and is taken from the FAO/ Forest Department's National Forest Inventory of $1971 / 72$ for the average volume in logged over forest. When a tree height is missing the first function is automatically applied.

For the enumerations done before 1993, using version 1 of the field card, the number of logs are scored. Each log section is 5 meters in length. The number of logs is converted to meters before applying the second equation. If the number of logs is less than 2 , the first function is used, as 1 log is scored for small trees even if the clear bole is less than 5 meters.

```
SELECT VOLUME FUNCTION :
BASED ONLY ON DTMMETER (HETGGES HOT MEASURED) : % 
BASED ON BOTH DIAM AND HRIGMT (HEIGHT IS MBASURED: M) : 2
BASED ON BOTH DIAM AND NUMERR OF LOGS (1 LOG=5M) : % 3:
```

The table is then processed.
Output : The standtable giving number of trees per hectare is printed out, but it is possible to suppress the printing of the basal area table.

PRINT THE TABLES OE BASAL AREA/VOLUME ? (Y/N)

Continuing:
In order to save time, it is possjble to select option 1 which produces another table using exactly the same layout.

```
ANOTHER FILE = 1
    FINISH = 2:
```


ITTABWQS.FOR :

This is the programme for tabulating trees per "Species Code" (Vernacular Name) using the standard species list sPECIES.DAT oi any special species list.
The interactive communication is similar to that of ITTABSTD, except that for the tables output the rows (horizontally) are always taken by the Hood Quality Groups/ Spocies name.
The use of the page option is not possible and the table will contain the combined average of the codes spocified. F. ex if Log Grades 1 and 2 are requested the output 9 ± 11 be the combined average of the two Log Grades.

Input : A main data file, trees only.
: A species list f.ex. SPECIES.DAT, or a special
species list.
: The file containing the forest location names : FORRESV.DAT.
: The file containing the treatments : TABTREA.DAT : The command file FCOMWQS.DAT if needed.

Commands :
COMMANDS FROM KEYBOARD $=5$
OR FROM FILE FCOMWQS.DAT $=4$
Then the data filename is reguested :
INPUT FILENAME: (E天. SLTMTO1.921)
Then comes the interactive session defining the standtable to be produced :

MAX. NUMBER OF BLOCKS (BLCK) $=4$
FOREST CLASSES (FCL) $=10$
STEM IDENTITY CLASSES (SIC) $=10$.
MEAN/SUMMARY OF ALI CLASSES $=0$
HOW MANY : BLCK"S, FCL"S, SIC"S
$\mathrm{EX}: 0,0,1$:
When 0 is selected the table will contain the combined average for all blocks or all Forest classes or all Stem Identity classes.

When 1 or another number is selected the table will contain the average of only those blocks or classes specified below.

In this example $(0,0,1)$ all blocks and all forest Classes are included but only one stem Identity class will be included.

If block number is requested :
GIVE THE BLOCK NUMBERS : Fx. 2,3,4
F. ex. answer 3,12 and the table will contain the average of the two blocks requested

If Forest class is selected it is possible to get a table for a combination of indtyidual forest Classes (maximum is 10) or a number of Lain Forest Classes :

USE INDIVIDUAL FCL" S LIKE 432, 434,532,533, ETC. $=1$
OR USE MAIN ECL"S LIKE 100,200,300, ETC $=2$
Answer as appropriate, then :
GIVE THE FOREST CLASS CODRS (MAX = AVERAGR OE 10)
Give the codes.
If the Stem Identity class is selected :
GIVE THE STEM IDENTITY CODES (HAX = AVERAGE OP 10)
If, as an example $\mathrm{at}=111$ is sclectod, the table mill contain information on living standing complete trees only.

The diameter class interval and the minimum diameter is selected as needed. There are 11 diameter classes in the output table.

GIVE THE LOWEST DIAMETRR, \& CLASS INTERVAI IN MM.

```
If the ansmej is 100,100 the minimum diameter is 10 cm
and the diameter class interval is 10 cm, and
consequently the upper diameter class iss 110 + cm.
```

WOOD QUALITY/ SPECTES TAKE THE ROWS/EAGES.
IE A VARIABLE IS GELECTED, THE TABLE WILL CONTATN THE
MEAN/SUMMARY OF THE CODES GTVEP.
I.E. NO PAGE BY PAGF OUREUT LTKE IN ITTABGTD.

SELECT ONE OF THE EOLLOWIVG VARIABLES
LOG QUALITY $=1$
CROP TREE STATUS $=2$
CROWN EORM $=3$
CROWN DOMINANCE $=4$
$S T E M$ DAMAGE $=5$
CROWN DAMAGE $=6$
EFEECT OF CLIMBERS $=7$
NO SELECTION $=9$
Answer f.ex: : 9
I.e. no variable is selected and the output will be the combined average of all.

If for ex. the table should give the distribution of commercial species having the good Log Qualities 1 and 2 the following is given :

1
The codes for which output is vanted is given next :
GIVE THE NUMBER OF CLASSES FOR:
WOOD QUALITY GROUPS AND THE VARIABLE SELECTED
In the first example it will be :
8,0
i.e. one row for each wood quality group, and no selection.

In the second example it will be :

5,2
Then the actual codes are given :
GIVE THE CODES FOR WOOD QUALITY GROUPS
F.ex: $1,2,3,4,5,6,7,8$
or: $1,2,3,0,5$
And similarly:
GIVE THE CODES FOR SELECTED VARTABEE
E.ex: 1,2

GIVE SPECIES CHECK
SPECIES.DAT $=1$, OTHER LISC $=2$)
Jt is possible for special investigations to provide a list of species (genera) for which an output table is needed, it may f.ex. be the occurrence of fruit bearing trees for wild-life. In this case the list is made up using an editor programme and the filename for that species list supplied. For normal running when all species are needed the standard species list (SPECIES.DAT) is selected.

Select if output should give local or latin names
LOCAL NAME $=1$, SCIEMTIFIC NAME : $2:$

As for ITMABSTD, it is possible to tabulate the volume per species.

TABLES FOR :
NUMBER OF STEMS AND EASAL AREA $=1$

Answer as needed.
If output is requested for volume, the volume function to be used is selected as explained under ITTABSTD above.

```
SELECT VOLUME FUNCTION :
BASED ONLY ON DIANETER (HETGHTS NOT MEASURBD) : 1
BASED ON EOTH DIAM AND HETGFT (HEIGHT IS MRASURED: M) : 2
```


The table is then processed.
Output : The standtable giving number of trees per hectare by species (Vernacular nane) is printed out. It is possible to suppress the printing of the basal area table.

DO YOU WISH TO PRINT THE BASAL AREA (Y/H)

ITTABSAP.FOR :
This programme is used to produce output tables for saplings, seedlings and planted wildiings.
The interactive communication is similar to that of EDTABWQS above. The option by species is included in the programme.

Input : A main data file, Saplings, Seediings or planted Wildlings.
: A species list f.ex. SPECIES.DAT, o: a special species list if needed.
: The file containing the forest location names : FORRESV.DAT.
: The file containing the treatment descriptions : TABTREA. DAT.
: The command file FCOMSAP.DAT if needed.
Commands :
COMMANDS FROM KEYBOARD $=5$
OR FROM FILE FCOMSAP.DAT $=4$
In the cases where a number of tables are needed using the same pattern of output, it is an advantage to create the command file coM fisAP. DAT, using a text editor, to contain the commands.

Then the data filename is requested :
INPUT FILENAME: EG. SLTMTO6.922
Then comes the interactive session defining the standtable to be produced :

MAX. NO. OF BLOCKS (BLCK) $=4$,
FOREST CLASS (FCL) $=10$
STEM IDENTITY CLASS $(S I C)=10$
HOW MANY: BLOCK"S, FCL"S, SIC"S
$0=$ MEAN $/ S U M M A R Y$ OF ALL, EX: $0,0,1$
When 0 is selected the table will contain the combined average for all blocks or all Forest Classes or all Stem Identity Classes.

When 1 or another numer is selected the table will contain the average of only those blocks or classes specified below.

In the example $(0,0,1)$ all blocks and all Forest Classes included but ouly ore Stem Identity class will be included.

If block number is requested :
GIVE : BLOCK NUMBERS
EX. 2,10 OR 13,14,23
Example: 2,10
In this example the table will be the average of the two blocks : 2 and 10 .

If the Forest Class is selected it is possible to get a table for a combination of individual Forest classes (maximum is 10):

GIVE THE FOREST CLASS CODES (MAX = AVERAGE OE 10)
Give the codes.
If the stem Identity class is selected :
GIVE THE STEM IDENTTTY CODES (MAX= AVERAGE OF 10)
Ex. 211 (SAPL. COMPL.), 311 (SERDL./WILDL COMPL.) ETC.
If, as an example SIC $=211$ is selected, the table will contain information on living standing complete saplings only.

The dianeter classes ame fixed at 1 cm intervals from 0 to 2.0 .2 .0 to $<3.0,3.0$ to 4.0 and 4.0 cm and above. Max. diam for saplings is 5 cm. However; in the case of wildings, sone fast groving plants may reach 5 cm and more. Seedlings are counted and neither diameter nor height is measured.

GIVE THE NUMBER OF CTASSES FOR :
THE WOOD QUALITY GROUPS :
For example, to include all species:
8

Then the actual codes are given :
GIVE THE CODES FOR WOOD QUALITY GROUPS
F.ex: $1,2,3,4,5,6,7,8$

TABLES NOT BY VIGOUR CLASS $=1$
OR TABLES BY VIGOUR CLASS = 2 :
Select 2 if tables are needed by vigour class, one table for each of the 3 classes will be produced. For saplings and planted wildlings only.

TABLES BY DIAMETER CLASS = 1
OR TABLES BY HEIGHT CLASS = 2 :
In the cases where heights are mocsured for saplings and planted wildings it is possible to tabulate the height classes.

GIVE SPECIES LIST
TABLE PER WQG ONLY : 130 CHECK $=0$
TABLES PER SPECIES : SPECIES.DAT $=1$
TABLES FOR OTHER SPDCIES LIST $=2$
It is possible for special investigations to provide a list of species (genera) for which an output table is needed, it may f.ex. be the ocourrence of fruit bearing trees for wild-life. In this case the list is made up using an editor programme and the filename for that species list supplied.

GIVE SPECIES LIST FILENAME :

For normal running, when all species are needed, no checks are required. Eor a list of all species the full species list (SPGCTES.DAT) is used.

Select if output should give local or latin names
LOCAL NAMES $=1$, SCIENTIFIC MAMES $=2$
The subplot sizes used in this programme are :
For sapling subplots $\quad=0.0025 \mathrm{ha}$
for seedling subplots $\quad=0.0004$ ha
for plantation plots (17 plant lines) $=(1 / 17)=0.0588 \mathrm{ha}$ for enrichment planting plots (10 plant lines) $=0.01 \mathrm{ha}$

Output : A standtable by diameter or height olass giving number of saplings or seedings on wildings per hectare and possibly by species (Vernacular name).

ITHEIGHT.FOR

This programme produces a table of bole heights or number of logs per diameter class per Wood Quality Group for either all log qualities or log quality 1 or 2 . It also.gives the number of trees for which bole height or number of loss is scored.

Input : A main data file, trees only
Commands :
GIVE THE LOWEST DIAMETER CLASS, AND CLASS TNTGRVAL (IN MM)
Usually 10 cm diameter classes starting from 10 are needed:

100,100
GIVE FILENAME :
Give the file name of a tree-file.
ALL LOGGRADES: 1
OR ONLY LOGGRADES 1 AND $2: 2$
The commercial Loggrades are 1 and 2 .
In the earlier enumerations using version 1 of the field card number of logs were estimated. In field card version 2 used from 1993, the commercial or clear bole height is measured in meters.

TABLE OF TRUNK (COMM.) HEIGHT : 1
OR NUMBER OF LOGS: 2
Output : A printed table giving either bole heights or number of logs by diameter class and the number of trees.

ITSPSUM.FOR :
This programme produces a listing of the number of trees per species code (vernacular name) per hectare for the enumerated areas specified in file ITSPSUM.DAT, (update/change by text editor). An example is given in the Appendix. The summary is stored and updated in the unformatted file SPECIPS.SUM

This program is useful for comparing the "species" diversity between different areas at different points in time after harvesting and having received different treatments.

Input : A main data file.
: The file containing the data filenames and enumerated area : ITSPSUM.DAT
: The file containing the summary : SPECIES.SUM : The species list : SEECIES.DAT

Commands :
DO YOU WISH TO ZEROFILL THE SPECIES SUMMARY (Y/N)
Answer yes (Y) if a completely new list is needed. If only an update or addition is needed answer no (N).

The file SPECIES.DAT is used as the species list.
FILE NAME FOR SPECIES SUMMARY :
Fx: SLTMT01.921
Give the file name of a file that is already included with its enumerated area size in ha in the file ITSPSUM.DAT
If the filename is not included this message appears :
filename not Included, try again!
In order to avoid duplicating the species summary for a file the programme check if the file has already been used. If so this message appears :

FILE ALREADY USED, TRY ANOTHER = 1
OR GET MENU $=2$
Answer 1 and give another file name or answer 2 to get the menu (see below).

START OR ANOTHER FILE : 1
CHANGE DIRECTORY : 2
WRITE THE SPECIES SUMMARY : 3
FINISH : 4

Answer as required.

For the printed output the specied summary can be presented in different ways.
The complete list can be printed or a subset can be printed containing only those speqies that in the total column occur vith a minimum amo naximum number of trees. In this way a summary of the more common species (Vernacular names) can easils be obtained.

Output : A printed list according to the specifications given :

USE LOCAL NAMES : 1, LATIN NAMES : 2
Answer as appropriate.
LIST ALI SPECIES : 1
OR GIVE RANGE : 2
Answer 1 to print the full list or 2 for a subset.

GIVE RANGE OF NUMBER OF TREES PER HECTARE

(MIN,MAX) EX : 10,100 OR 2,5 :
Give the range required. F. ex. 10,100 will cause a list to be printed for all the species containing 10 trees or more per hectare as an average of all plots. The range applies to the total column, not the individual locations.
If 2,5 is given only those species containing from 2 up to 5 trees per hectare (incl.) are printed out.

NOTE : For tree/pole files, the per ha figure is calculated correctly. Poles (5-15cm DBH) are only enumerated in the 9 central quadrats. The area factor per pole is thus 25/9, which is incorporated in the programme calculations.

3.6 Programmes for the Production of Growth and Yield Tables

In addition to the standtable programmes listed above, the package also includes programmes to calculate growth and mortality in permanent plots having a similar layout.

This includes a special edit programme used in detecting inconsistencies between two or more enumerations of the same plot.

ITGROEDT.FOR :

This programme is used to compare the same tree in from 2 up t 5 enumerations of the same plot. The following items are checked:

- Whether the tree is found or not. If the tree is not foun in a subsequent enumeration it may be because the tree is dead or because of an error.
- If the tree is not found in a previous enumeration it may be because it is a new recruit or an error.
- A special summary of new recruits per vernacular name can be requested.
- The species code number is checked, no changes are accepted.
- The Stem Identity Class Code is checked, unlikely changes are listed.

This programme has proved very useful for final editing of a n enumeration of a plot before attempting to run the Growth program. The list of new recruits produced by a special secti of this program has also proved very useful.

GROWTH EDITING / LISTING OF INCOMPATIBLE TREES
CHECK : WQG/SPECIES CODE
IMPROVEMENT IN SIC
NEW RECRUITS AND TREES NOT FOUND.
GIVE FILENAME FOR BASEYEAR : FX. SLTMT02.921
Give the filename, then
NUMBER OF YEARS TO BE CHECKED: (INCL. BASEYEAR)
MIN 2, MAX 5 ENUMERATIONS
Give the number of years (enumerations)

Give the years, except for the base-year that has already been given. The years can be in any order, they are sorted internally in the correct order by the programme.

The species list is used to check the validity of the species codes. Speoier not found are listed as errors. For the printout either local or scientific names can be used:

```
VERNACULAR NAMES = 1, SCIENTIEIC NAMES = 2
```

When the baseyear is not the first year, new recruits can be listed individually tree by tree or a summary per species can be requested. For big files it is suggested just to make the summary. Serious errors are always listed.

SUMMARY OF NEW RECRUTTS $=1$
LIST ALL NEW RECRUTTS $=2$
Normally answer 1
NOTE : The summary of rev recruits gives the actual number, not the per ha, per year figure, There is no area correction for poles. The number of nev recruits is thus a mixture of new recruits over the 5 cm pole bounchary and the 15 cm tree boundary. For a correct calculation of the number of new recruits per ha, per year use the programme ITINGRON.

For later years dead trees are not remeasured and therefore the list of trees not found can be very long. Hovevor, for two subsequent enmerations, one or two years apart, the eheck for trees not found can be very useful to ensure that all trees are included in the files.

EXCLUDE TREES NOT FOUNT FROM ITST $=1$
LIST ALL TREES NOT FOUGD $=2$
The output may contain real errors that must be corrected before continuing. But there may also be cases where a broken tree recovers its crown which is listed as SIC improvement from 112 to 111 , this has to be accepted. However, if a dead tree suddenly becomes alive it must be checked, like if sIC changes from 132 to 111.
When all errors have been corrected, output of growth, mortality, and ingrowth can be produced using the different growth programmes.

ITGROWTH.FOR :

This programme is used to calculate the mean annual diameter increment between two enumerations of the same permanent sample ple the base-year and the growth-year. The options and the layout are similar to the ITTABSTD programme. In addition to the diameter growth, the mean annual mortality percent is calculated based on tr number of trees that has died since the previous enumeration seleci as base-year. It is possible to select two different mortality rate commercial, and biological.
The commercial mortality include, in the mortality figure, all tref that change SIC, like broken, and fallen trees, even if the trees a still alive. In most cases these trees, where the crown is broken c even if they survive, will develop hart rot and, from a commercial point of view, they have no value.

The biological mortality only include trees that are actually dead that are not to be found and therefore considered dead. Trees that are broken or fallen, but still alive are considered living.

Input : A main data file, trees only, as baseyear. : A subsequent enumeration of the same plot as growt year
: A species list f.ex. SPECIES.DAT, or a special species list when output per species is requested. : The file containing the forest location names : FORRESV.DAT.
: The file containing the treatments : TABTREA.DAT : The file ??DATES. DAT containing decimal date of enumeration. : The command file FCOMWQS.DAT if needed.

Commands :
COMMANDS FROM KEYBOARD $=5$
OR FROM FILE FCOMGRO.DAT $=4$
Select as appropriate, for producing several tables the same layout, it saves time to use the file FCOMGRO.DAT to contain the commands, use a text edit to update.

GIVE FILENAME FOR BASE YEAR: EX. PITMT01.901
After giving the filename for the base-year the yeas of the subsequent enumeration of the same plot for which the growth need to be calculated is requested (only the year like '93' is given)

GIVE GROWTH YEAR: EX. 92
The indexfile to the growth year is then read, if th file does not exist an error message occurs. Run ITINDEX to create the index file to growth year.

Then give the decimal date for baseyear and growth year, the decimal dates are kept in the file ??DATES.DAT in the same directory as the datafile where ?? stands for the two first letters of the datafile name: f.ex. SLTMT01.921, the Sungei Lalang plot, the dates are kept and updated in SLDATES .DAT

The following conversation is similar to ITTABSTD and is just repeated here as a reminder without comments.

```
    MAX. NO. OF BLOCKS (BLCK) = 4'
FOREST CLASS (FCL) =10'
STEM IDENTITY CLASS (SIC) = 10'
FOR MEAN/SUMMARY OF ALL CLASSES ANSWER : 0'
GIVE THE NUMBER OF BLCK"S, FCL"S, SIC"S'
Fx. 0,0,1:'
```

GIVE THE BLOCK NUMBERS, Fx. 4,10'
. GIVE THE FOREST CLASS CODES (MAX = 10)'
GIVE THE STEM IDENTITY CODES (MAX=10)'
GIVE THE LOWEST DIAMETER CLASS, AND CLASS INTERVAL (IN MM.)'

The growth and mortality can be tabulated for all species or for a subset of the species as required.
' ANY SPECIES CHECK REQUIRED ?'
, (NO CHECK $=0$, SPECIES.DAT $=1$, OTHER LIST $=2)^{\prime}$
If no species list is given the tables will be by wood Quality Group, and the page option can be used.

If a species check is required using another species list, give the species list filename.
' GIVE SPECIES LIST FILENAME : '

Select vernacular or scientific names for output:
, LOCAL NAME $=1$, SCIENTIFIC NAME $=2^{\prime}$
, CHOOSE TWO OF THE FOLLOWING - HORIZONTAL AND PAGE VARIABLE' LOG QUALITY $=1$
CROP TREE STATUS $=2$
CROWN FORM $=3$
CROWN DOMINANCE $=4$
STEM DAMAGE $=5$
CROWN DAMAGE $=6$
EFFECT OF CLIMBERS $=7$
WOOD QUALITY (WQG) $=8$
NO PAGE VARIABLE $=9$

If the output is requested by species only one Wood Quality Group can be requested per run due to array size limitations.
' OUTPUT IS PER SPECIES, WOOD QUALITY BY PAGE NOT POSSIBLE'

- GIVE THE NO OF CLASSES FOR EACH VARIABLE SELECTED'
\therefore GIVE THE CODES FOR HORIZONTAL VARIABLE'
' GIVE THE CODES FOR PAGE VARIABLE '
As a check for unlikely growth rates, maximum and minimum annual growth rates are given. Trees are listed when the mean annual increment falls outside the range.
' GIVE MAX. AND MIN. GROWTH PER YEAR IN MM.'
normally $50,-10 \mathrm{~mm}$ should be 0 K .
' TABLES FOR COMMERCIAL MORTALITY = 1',
, OR FOR BIOLOGICAL MORTALITY = 2 :'
answer as requested.
- TABLES FOR DIAMETER INCREMENT $=1^{\prime}$
' OR TABLES FOR BASAL AREA INCREMENT = 2 :'
In one run either diameter increment or basal area increment is produced.

The list of trees excluded should be listed on the lineprinter for checking the first time a new set of files are used, later it is OK to have the error file listed on the screen.
, EDIT LIST ON PRINTER : LP = 2'

- OR ON SCREEN : LP $=6:$:

The processing then continues, and the growth table is printed.

ITGRORAT.FOR :
It is often of interest to tabulate the number of trees and the size class distribution by growth rate. Of particular interest is the proportion of trees that shows no or very slow growth rates (Quiescence).
The program tabulates diameter increments by growth rate. There are 10 growth rates : (Mean annual increment per year in millimeters.)
<0
$=0$
$0<2$
$2<4$
$4<6$
$6<8$
$8<10$
$10<12$
$12<$
The programme conversation is similar to that of ITGROWTH. However, the growth rates always take the rows. The horizontal variable is converted to a selection variable, ie. the table will be a summary of the codes specified. The individual page by page output is possible for all variables including by species. But be aware that, by selecting species as page variable, the output can be very lengthy although only one Wood quality Group is allowed per run.
CHOOSE TWO OF THE FOLLOWING - SELECTION AND PAGE VARIABLE'
LOG QUALITY
CROP TREE STATUS
CR
CROWN FORM
CROWN DOMINANCE
STEM DAMAGE
CROWN DAMAGE
EFFECT OF CLIMBERS
WOOD QUALITY (WQG)

The rest of the conversation is similar to that of ITGROWTH.

ITINGROW.FOR :

This programme is used to tabulate ingrowth. Ingrowth is defined as trees that are found above the minimum diameter in baseyear, but below that diameter or not found in a previous enumeration (ingrowt) year).
$N O T E$: the base-year is a later enumeration and the ingrowth-year i: a previous enumeration, ie. the opposite of ITGROWTH and ITGRORAT. Otherwise the conversation is similar to that of ITGROWTH.

The minimum diameter is the diameter limit over which ingrowth is defined. The diameter class interval should be set quite narrow, 20 or 10 mm , to follow closely how the new recruits develop over the diameter classes.

When the minimum diameter is selected below 15 cm DBHob only the 9 central quadrats in each block, where trees are measured above 5 cm are included to avoid definition problems.

ITSELECT.FOR :

This programme prepares the data from the permanent research plots a form that can be read by statistical analysis programme packages and other commercial software.
This programme is useful, as the other programmes only tabulates th. data without giving any statistical information.

The output is a blank (' ') separated, fixed format datafile in ASCII.

The programme will combine data from up to five enumerations of the same permanent sample plot. The variables to be included are select through interactive communication in a similar way as for the ITGROWTH programme. A documentation of which variables were selecte and included in the ASCII file is printed out for reference.

It is advisable to plan carefully the type of analysis to be conducted and to reduce the number of variables to be included in order to keep the output file to a manageable size.

Commands :
GIVE FILENAME FOR BASE YEAR: EX.SLTMTO1.921
The baseyear is the first year of the growth period be analyzed.

NUMBER OF YEARS TO BE INCLUDED
MIN.: 1, MAX.: 4 LATER ENUMERATIONS
Give how many years (files) to use for the output.

GIVE ENUMERATION YEAR(S), (NOT BASEYEAR) EX. 93,94:

The years can be given in any sequence, they are sorted internally.

The decimal dates are needed for the printed documentation, they are not part of the output ASCII file. They are taken from the file --DATES.DAT where -- are the two first letters identifying the area like SL = Sungei Lalang.

In order to limit the output it is possible to exclude trees that die or cannot be found in a later enumeration.

EXCLUDE BIOLOGICALLY DEAD TREES

AND TREES NOT FOUND FROM THE OUTPUT LIST $=1$ INCLUDE ALL TREES $=2$

The following selection procedure follow closely the standard and is not repeated here, see ITGROWTH. No selection means that everything is included.

MAX. NO. OF BLOCKS $(B L C K)=4^{\prime}$
FOREST CLASS (FCL) $=10^{\prime}$

STEM IDENTITY CLASS (SIC) $=10^{\circ}$
, NO SELECTION FOR CLASS ANSWER: 0^{\prime}
' GIVE THE NUMBER OF BLCK,FCL,SIC'
, Ex. 0,4,1 :'

> The minimum and maximum diameter define the diameter range of the trees in the baseyear that are written to the output file. Trees having diameters (DBHob) outside the range given are not included : (Giving a large maximum diameter means that there is in fact no upper limit i.e. all sizes included.)

GIVE THE MINIMUM AND MAXIMUM DIAMETER (IN MM.)
Ex: 200,4000 OR 50,150 :
As the statistical analysis will often be done at species level it is possible to create a small file containing only the species codes needed, no local or scientific name is required, only the 5 digit Wood Quality Group, Family, and Genera code number.

SELECTION OF CERTAIN SPECIES
FROM A SPECIAL FILE $=1$
ALL OR NO SPECIES SELECTION $=0$
The actual variables to be written to the output file is then requested, first for the baseyear, then for the growth years.

The variables for the growth years need not be the same as for the baseyear, but the variables will be the same for all growth years if more than one growt year is selected.

```
GIVE VARIABLES FOR STATISTICAL OUTPUT FOR BASEYEAR
EXCLUDE = 0, INCLUDE = 1:
FOREST CLASS
TRMT
BLOCK
STEM IDENTITY CLASS
WOOD QUALITY GROUP
FAMILY
GENERA
DIAMETER DBHOb
COMMERCIAL HEIGHT
LOG QUALITY
CROP TREE STATUS
CROWN FORM
CROWN DOMINANCE
STEM DAMAGE
CROWN DAMAGE
WINES/ CLIMBERS
```

For the growth years, TRMT, BLOCK, WQG., FAMILY, and GENERA cannot be selected for output.

GIVE VARIABLES FOR STATISTICAL OUTPUT FOR GROWTH YEARS
EXCLUDE $=0$, INCLUDE $=1:$

FOREST CLASS
STEM IDENTITY CLASS
DIAMETER DBHOb
COMMERCIAL HEIGHT
LOG QUALITY
CROP TREE STATUS
CROWN FORM
CROWN DOMINANCE
STEM DAMAGE
CROWN DAMAGE
WINES/ CLIMBERS

As it is easy to make errors in the selection it is possible to do the selection all over again :

DO YOU WISH TO MAKE CHANGES $=1$, ACCEPT $=2$
Finally the filename for the output file is requester select a meaningful name, a filename that already exist cannot be used.

GIVE FILENAME FOR OUTPUT Ex : STATTXX.DAT

The output file is then assembled, and a report printed giving information as to what the output file contains.

3.7 The Wood Quality Groups (for output)

In Appendix I, examples are given of the various types of printed output produced by the programmes. In the examples, reference is often given to Group 1, Group 2, ect. The Groups referred to are the Wood Quality Groups. All species are grouped into 8 Wood Quality Groups mainly according to the marketability of the timber.

The Wood Quality Groups (WQG) are :

1) Dipterocarps of the Meranti group
2) Dipterocarps, Non-Meranti

Non-Dipterocarps :
3) Fully marketable, light hard woods (LHW)
4) " - " , medium hard woods (MHW)
5) " - " , heavy hard woods (HHW)
6) Other woods, partially marketable
7) Other woods, non-commercial and unidentified
8) Light demanding pioneer species

4. Support Data Files

The listings are contained in Appendix IT.
FDAFCL. DAT :
Contain the Forest Class Codes and the descriptions.
ITSICTXT.DAT :
Contain the Stem Identity Class codes and the descriptions for trees/poles.

ITSICTX2.DAT :
Same as above for saplings, seedlings and wildlings.
SPECIES.DAT :
Contain the Wood Quality Group/Botanical code number and vernacular names used for data processing for the ITTO Study in Peninsular Malaysia.

FCOM???.DAT :
File containing the commands needed to run a tables programme, saves time and errors the same type of output is needed from several data files.

FORRESV.DAT :
File contains the list of locality names, forest reserves, wheri the plots are located.

TABTREA.DAT :
File contains the list of treatments applied in the different experimental plots.
??DATES.DAT :
File contains the decimal dates for the enumeration of the experimental plots. In some cases the year of the filename may not correspond to the year of the enumeration, when the enumeration was extended over the new year. F.ex. PITMT01.901 has the decimal date of 91.08 .

ITSPSUM.DAT :
File containing the list of filenames and the associated enumerated area in hectares for use by the ITSPSUM programme.

5. Standtable Projection Simulation Model

STANDPRO.FOR :

The Standtable Projection Simulation Model is used to project a stand into the future in order to estimate the development of the forest and the likely production.

The projections will form part of the Methodology for the Management Site Productivity Classification.
The present version of the Model is fully documented complete with instructions on how to run the programme in :

Korsgaard, $S, 1988$: "A Manual for the Standtable Projection Simulation Model", Danish Land Development Service, Viborg, first edition 1984, revised 1988, 75pp.

A copy of the manual is with the Forestry Department $H . Q$. in Kuala Lumpur.

The projection model will be updated in 1993 and will incorporate some of the suggestions made by the consultants from CTFT in France in their consultancy report (CTFT, "Report on Consultancy", Project PNUD/EAO/MAL/89/001, Forest Inventory and Management System, Malaysia - 1 to 13 April 1992).

A sample data input file is provided :
SLTO 192 .DAT
Contain a sample input-file to test the operation of the projection model STANDPRO above from a forest harvested down to 30 cm under the $\mathrm{IT} T \mathrm{O}$ research prescriptions.

```
Appendix I : Examples of printed output
I.1 ITCHRAW : Part of listing raw datafile information from
    fieldcard version no. 1.
```

PROGRAM ITCHRAW. LISTING OF QUADRATS IN RAN DATAFILES FOR CHECKING, FILE KSBLKO7. 9

```
    YEAR MONTH CMPT TRMT BLCK QUAD
HAPPY NEW YEAR !
```

 9112194
 NUMBER OF TREES : 15
QUAD.NO. 2 HAS QUADRAT NUMBER: 2
$\begin{array}{lllllll}91 & 12 & 194 & 1 & 7 & 2\end{array}$
NUMBER OF TREES : 11
QUAD NO. 3 HAS QUADRAT NUMBER : 3
$\begin{array}{llllll}91 & 12 & 194 & 1 & 7 & 3\end{array}$
NUMBER OF TREES : 10
QUAD NO. 4 HAS QUADRAT NUMBER : 4
$\begin{array}{llllll}91 & 12 & 194 & 1 & 7 & 4\end{array}$
NUMBER OF TREES : 8
quad NO. 5 HAS QUADRAT NUMBER : 5
$\begin{array}{llllll}91 & 1.2 & 194 & 1 & 7 & 5\end{array}$
NUMBER OF TREES : 14 .
QUAD NO. 6 HAS QUADRAT NUMBER : 6
$\begin{array}{llllll}91 & 12 & 194 & 1 & 7 & 6\end{array}$
NUMBER OF TREES : 10
$\begin{array}{crrrrr}\text { QUAD NO. } & 7 & \text { HAS QUADRAT NUMBER } & 7 & 7 \\ 91 & 12 & 194 & 1 & 7 & 7\end{array}$
$\left.\begin{array}{lll}\text { NUMBER OF TREES : } 29 \\ \text { QUAD NO. } 8 \text { HAS QUADRAT NUMBER : } & 28 \\ 28\end{array}\right]$
$\begin{array}{llllll}91 & 12 & 194 & 1 & 7 & \binom{28}{28}\end{array}$
NUMBER OF TREES : 20
QUAD NO. 9 HAS QUADRAT NUMBER : 37
$\begin{array}{llllll}91 & 12 & 194 & 1 & 7 & 37\end{array}$
NUMBER OF TREES : 6
QUAD NO. 10 HAS QUADRAT NUMBER : 8
$\begin{array}{lllllll}91 & 12 & 194 & 1 & 7 & 8\end{array}$
NUMBER OF TREES : 31
QUAD NO. 11 HAS QUADRAT NUMBER : 27
$\begin{array}{llllll}91 & 12 & 194 & 1 & 7 & 27\end{array}$
NUMBER OF TREES : 15
QUAD NO. 12 HAS QUADRAT NUMBER : 36

91	12	194	1	7	36

NUMBER OF TREES : 5
QUAD NO. 13 HAS QUADRAT NUMBER : 9
$\begin{array}{llllll}91 & 12 & 194 & 1 & 7 & 9\end{array}$

```
I.2 ITSPLIT : Part of listing information from splitting raw
    data file from fieldcard version no. 1.
```

PROGRAM ITSPLIT, ITTO/MALAYSIA JOINT PROJECT DATE \& 19/ 7/1993

INPUT FILE : SGL0193.DAT
--- TREE QUADRATS ---
QUADRAT NUMBER : 01 NUMBER OF RECORDS : 9
QUADRAT NUMBER : 02 NUMBER OF RECORDS : 9
QUADRAT NUMBER : 03 NUMBER OF RECORDS : 7
QUADRAT NUMBER : 05 NUMBER OF RECORDS : 8
QUADRAT NUMBER : 06 NUMBER OF RECORDS : 5
$9301100600050 \mathrm{PLT:} 201$ Q:07 TRNO:014 4440 SPECIES CODE NOT FOUND!
QUADRAT NUMBER : 07 NUMBER OF RECORDS : 15
QUADRAT NUMBER : 08 NUMBER OF RECORDS : 21
QUADRAT NUMBER : 09 NUMBER OF RECORDS : 43
QUADRAT NUMBER : 10 NUMBER OF RECORDS : 10
QUADRAT NUMBER : 11 NUMBER OE RECORDS : 4
QUADRAT NUMBER : 12 NUMBER OF RECORDS : 28
QUADRAT NUMBER : 13 NUMBER OF RECORDS : 30
9301100600050PLT: 201 Q: 14 TRNO: 0300000 SPECIES CODE NOT FOUND!
QUADRAT NUMBER : 14 NUMBER OF RECORDS : 46
QUADRAT NUMBER : 15 NUMBER OF RECORDS : 9
QUADRAT NUMBER : 16 NUMBER OF RECORDS : 5
QUADRAT NUMBER : 17 NUMBER OF RECORDS : 39
QUADRAT NUMBER : 18 NUMBER OF RECORDS : 33
QUADRAT NUMBER : 19 NUMBER OF RECORDS : 43
QUADRAT NUMBER : 20 NUMBER OF RECORDS : 7
QUADRAT NUMBER : 21 NUMBER OF RECORDS : 10
QUADRAT NUMBER : 22 NUMBER OF RECORDS : 7
QUADRAT NUMBER : 23 NUMBER OF RECORDS : 12
QUADRAT NUMBER ; 24 NUMBER OF RECORDS : 10
QUADRAT NUMBER : 25 NUMBER OF RECORDS : 12
422 TREE-RECORDS WRITTEN TO FILE : SGL0193.931
--- SAPLING QUADRATS ---
QUADRAT NUMBER : 26 NUMBER OF RECORDS : 11
QUADRAT NUMBER : 27 NUMBER OF RECORDS : 6
QUADRAT NUMBER : 28 NUMBER OF RECORDS : 2
9301100600050PLT: 201 Q:29 TRNO:018 0219 SPECIES CODE NOT FOUNDd
QUADRAT NUMBER : 29 NUMBER OF RECORDS : 18
QUADRAT NUMBER : 30 NUMBER OF RECORDS : 7
QUADRAT NUMBER : 31 NUMBER OE RECORDS : 7

```
PROGRAM FDLIST DATE : 20/07/1993
LISTING OF TSTMT06.911 PAGE : 1
\[
\begin{array}{ll}
00001 & 1000060100100111173501019801100 \\
00002 & 1000060100100211133201038702100 \\
00003 & 1000060100100311136001058202200 \\
00004 & 1000060100100411178685018601200 \\
00005 & 1000060100100511165601017101200 \\
00006 & 1000060100100611173501015501200 \\
00007 & 1000060100100711150216015201200 \\
00008 & 1000060100200111164201052401100 \\
00009 & 1000060100200211133201017601100 \\
00010 & 1000060100200311165001023101190 \\
00011 & 1000060100200413421201100500000 \\
00012 & 1000060100200511150216043402100 \\
00013 & 1000060100200511164801032201200 \\
00014 & 1000060100200611164801032201200 \\
00015 & 1000060100200711121401051402100
\end{array}
\]
```

I.4.1 ITLSEILE : Part of a main datafile.

PAGB : 1
** LISTIMG OP PREBS/POLBS **
HLARAME = LEPMPO6.911 DATE : 20-07-1993
RBC=RECHO, SESPOCRED, RCL=PORBSY CLASS, T=TRKT, B=BLOCR, Q=QUADRAT,
 LG=LOGGRADR, SFA=SPAPUS; CID=CROUR PORM \& DOH., DAH=LOG \& CROHR DAHAGB, CL=CLIMBRRS.

		10				20			30						0
123456	789	01	23	456		012	34567		8901	23	1	5	57	89	0
RBC S	ICL	. 1	B	0	IH	SIC	109	SPBCIBS	D日H	SP1	16	STA	CPD	DaM	
gutarap		MBBR	1	1											
11	0	6	1	1	1	111	73501	Relat	198	1	1	0	00	12	0
21	0	6	1	1	2	111	33201	Kedoadoag	387	2	1	0	00	12	0
31	0	6	1	1	3	111	36001	Pelong	582	2	2	0	00	22	0
11	0	6	1	1	4	111	78685	Fexpiois	186	1	2	0	00	12	0
51	0	6	1	1	5	111	65601	Herpaub	171	1	2	0	00	22	0
61	0	6	1	1	6	111	13501	delat	155	1	2	0	00	22	0
11	0	6	1	1	7	111	50216	Keranti nelantal	152	1	2	0	00	22	0
gUADRAP		MBER	1	2											
81	0	6	1	2		111	64201	Rulia	524	1	1	0	00	22	0
91	0	6	1	2	2	111	33201	Redoindong	176	1	1	0	00	11	0
101	0	6	1	2	3	111	65001	Meapeaing	231	1	1	0	00	11	0
111	0	6	1	2	1	134	21201	Chengal	1005	0	0	0	00	00	0
121	0	6	1	2	5	111	50216	Meranti nelantai	434	2	1	d	00	21	-
131	0	6	1	2	5	111	64801	Medag, H. pepijat	322	1	2	0	00	22	-
141	,	6	1	2	6	111	64801	Hedang, M. pepljat	322	1	2	0	00	22	
151	0	6	1	2	1	111	21401	Resak	514	2	1	0	00	22	0
161	0	6	1	2	8	111	64201	kulim	251	1	2	0	00	33	
171	-	6	1	2	9	111	79999	Laln-laia	333	1	3	0	00	22	0
181	0	6	1	2	10	111	13501	Relat	575	2	1	0	00	22	0
goadrap	Hun	bbrr	1	3											
191	0	6	1	3	1	111	66201	Penaraban	256	2	1	0	00	12	0
201	0	6	1	3	2	111	73501	Kelat	261	1	1	0	00	22	0
211	-	6	1	3	3	111	78685	feaplals	205	1	2	0	00	23	0
221		6	1	3	4	111	81501	Ara, A. kelepong	176	1	2	0	00	22	0
231	0	6	1	3	5	111	65401	Merbatu	289	1	2	0	00	22	0
241	,	6	1	3	6	111	78685	Teaplals	166	1	2	0	00	22	0
251	0	6	1	3		111	65401	Herbatu	207	1	1	0	00	22	0

I.4.2 ITLSFILE: Part of a Quadrat information file fr the old fieldcard version no. 1.
progral illsfily. joirf itfomalaysia projbct
PAGB: 1

```
    *"* Lisfing of quadrats "logging in virgin forbsf" ***
HLEMAKB = LESO191.910 DATE : 20-07-1993
```


 block nokber : 1

PRBB/P			dadrars	1													
9110	6	9	0 171.6		103			0	0			4	0	2			
9110	6	S	01716	1.2	203	38	00	0	0	0	0	0	0				
9110	6	9	01716	3	15	46	00	00		0	0	0					
9110	6	9	01716	14	131	16	00	00	0	0	0	0	0	0	0	0	0
9110	6	9	01716	15	40	46	00	00	0	0	0	0	0	0	0	O	
9110	6	9	01716	6	15	16	00	00	0	0	0	0	0	0	0	-	
9110	6	9	01716	11	252	2	61	20	0	0	3	0		0		0	
9110	6	g	01716	18	122	2	61	20	0	0	3	0	O	0	0	0	
9110	6	9	01716	19	10	32	612	20	0	0	4	0	-	-	0	0	
9110	6	9	01716	110	103	32	00	0	0	0	0	0	0	0	0	0	
9110	6	9	0171	111	153	32	00	0	0	0	0	0	0	0	0	-	
9110	6	9	01716	112	15	41	61	20	0	0	3	2	0	0		0	
9110	6	9	01716	113	10	26	61	00	0	0	3	3		0		0	
9110	6	9	01718	114	10	36	6	20		0	1	0	0	0		0	
9110	6	9	01716	115	134		0	00	0	0	0	0	0	0	0	0	
9110	6	9	01716	116	154	4	000	0	0	0	0	0	0	0	0	0	
9110	6		01716	117	25	17	61	2	0	0	1	1	0	0	0	0	
9110	6	9	01716	118	20	41	61	20	0	0	3	0	0	0	0	0	
9110	6	9	01716	119	542	2	6	20		0	3	1	0	0	0	0	
9110	6	9	01716	120	1542	2		00	0	0	0	0	0	0	0	2	
9110	6	9	01716	121	175	5	00	00	0	0	0	0	0	0	0	0	
9110	6	g	01716	122	181	12	00	0	0	0	0	3	0	0		0	
9110	6	t	01718	123	401	1	00	0	0	0	0	0	0	0		0	
9110	6	9	01716	124	1	16	00	00	0	0	1	0	0				
9110	6	9	01716	125	102	2	0	00	0	0	1	0	0	0	0	0	
SAPLII		OAD	Rars 1585														
9110	6	9	01716	126	153	38	612	2		0							
9110	6	,	01716	127	2	2	6	20	0	0	1.	0	0	0			

I. 5 ITLSBLCK : A treatment, block, no. of Quadrat's list.

```
PROGRAM ITLSBLCK
    DATE : 20/ 7/1993
THIS PROGRAM TABULATES THE NUMBER OF QUADRATS
FOR EACH BLOCK PER TREATMENT
CHECK CAREFULLY FOR ANY MISSING QUADRATS OR OTHER ERRORS IN THE FILE.
    LISTING OF NUMBER OF QUADRATS PER BLOCK IN FILE : LETMT06.911
    TREATMENT BLOCK NUMBER OF QUADRATS
        06 01 25
        06 20 25
        06 25 25
            06 28
        25
TOTAL :
                                4
                                    100
```

I. 6 ITQUCHCK : Part of a clean Quadrat list.


```
I.7 ITEDIT : An edit list.
```

EDIT OF FILE : LETMTO6.901 LINO T FCL TM BL QNO NOS SIC Q WOT
$1710006 / 1 / 30311178685196000000000$ CHECK NUMBER OF LOGS
$1710006 / 1 / 30311178685196 \quad 00000000$ CHECK LOG QUALITY
$1710006 / 1 / 3311178685196000000000$ ILLEGAL STEM DAMAGE
$171000.6 / 1 / 3031117868519600000000$ ILLEGAL CROWN DAMAGE
$3110006 / 1 / 41011178685 \quad 210 \quad 12000200$ ILLEGAL CROWN DAMAGE
$4610006 / 1 / 51011178685165 \quad 02000020$ CHECK NUMBER OF LOGS $4610006 / 1 / 51011178685165020000020$ ILLEGAL STEM DAMAGE $6010006 / 1 / 61211179999196 \quad 0 \quad$ CHECK NUMBER OF LOGS $6010006 / 1 / 6121117999919600000000 \mathrm{CHECK}$ LOG QUALITY $6010006 / 1 / 61211179999196000000000$ ILLEGAL STEM DAMAGE $6010006 / 1 / 61211179999196 \quad 00000000$ ILLEGAL CROWN DAMAGE $6310006 / 1 / 61511178685,235 \quad 00000000$ CHECK NUMBER OF LOGS $6310006 / 1 / 61511178685 \quad 235 \quad 0 \quad 0$ CHECK LOG QUALITY $6310006 / 1 / 61511178685235 \quad 000000000$ ILLEGAL STEM DAMAGE $6310006 / 1 / 61511178685235 \quad 000000000$ ILLEGGL CROWN DAMAGE $6610006 / 1 / 7211133201350 \quad 0 \quad 0$ CHECK NUMBER OF LOGS $6610006 / 1 / 7211133201350 \quad 0 \quad$ CHECK LOG QUALITY
I. 8 ITFCL
: Part of a list of Forest Classes. (Not yet included)
I. 9 ITSIC : A Iist of Stem Identity Classes.

```
PROGRAM ITSIC
    DATE OF PRODUCTION : 20/07/1993
SUMMARY OF STEM IDENTITY CLASSES FROM FILE : LETMT06.911
    SIC CODE NO. OF STEMS PERCENT
        000 5 -- (EMMPTY QUADRATS)
        111 1408
        131 147
        134
        4 4
    1 5 9 9
100.1
```

I. 10 ITTABSTD: A stand table, number of trees/poles and basal area.

ROGRAK IFPABSFD

DATB : 20/07/1993
dresphy deparfarhf a.p. IItio, ruala lokpor
 HOCK - ALL BLOCKS
CRESP CLASS - ALL CLASSES
ITBK IDERYITY CLASS = 111
 SPRCIBS LIST $\quad 10$ CHECKS MADE Page vartable mot usbd

PRHF. 02 : COI ALL $>=15 \mathrm{CM}$
no. OR qUADRAES : 100, AREA : 4.00 明.

MEAR WUABRR OI fREBS PER 日RCFARE
diakspar classes in canfingrrgs

5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	TORAL	PBR-
-9.9	-14.9	-19.9	-24.9	-29.9	-34.9	-39.9	-44.9	-49.9	-54.9	+		CERF

VOOD QUALITY

GROOP	1	6.25	4.17	1.00	. 50	1.50	1.00	1.25	. 50			16.17	2.14
GRODP	2	4.17	4.17	2.25	. 50	. 50	. 50	1.00	. 25			13.33	2.01
GROUP	3	48.61	25.69	11.50	8.50	5.75	5.25	2.50	1.00	. 25.		109.06	16.14
GRODP	1	2.78	2.78	3.50	. 75	1.00	1.50	. 50	1.00			13.81	2.08
group	5	2.78	.69	. 25	. 25	. 50	.25		.25			4.97	. 75
GROOP	6	95.83	12.36	20.75	13.50	6.25	9.00	3.75	4.25	.25	. 25	196.19	29.57
GROOP	1	154.86	56.25	24.75	22.00	16.00	8.25	6.00	4.00	. 50		292.61	14.10
GROOP	8	10.42	4.17	1.50	. 25	. 25		.50	. 25			17.33	2.61
FOFAL P1	8A.	325.70	140.28	65.50	46.25	31.75	25.75	15.50	11.50	1.00	. 25	663.48	100.00
PBR CBMI		49.09	21.14	9.87	6.97	4.79	3.88	2.34	1.73	. 15	. 04	100.00	
POPAL	PLOFS	469.	202.	262.	185.	127.	103.	62.	46.	4.	1.	1461.	

pRogran IfPabsfo
corestri diparfainf h.e. Iftto, koala bohpor


```
BLOCE = RLL BLOCKS
TORESP CLASS = LLL CLASSES
SPEK IDEMTIYY CLASS = 111
```



```
    SPBCIBS LISI : NO CHECKS MADS
    PAGE VARIABLE MOT USED NO. OP DOADRAPS: 100, AREA; 4.00 MA.
```

MBAM BASAL ARBA PBR hBCTARE (SQUARE MEfRES) DIAKBFBR CLASSES IR CEMFIKEPRES

$$
\begin{array}{rrrrrrrrrrrrr}
5.0 & 10.0 & 15.0 & 20.0 & 25.0 & 30.0 & 35.0 & 40.0 & 45.0 & 50.0 & 55.0 & \text { TOFAL } & \text { PER- } \\
-9.9 & -14.9 & -19.9 & -24.9 & -29.9 & -34.9 & -39.9 & -44.9 & -49.9 & -54.9 & + & & \text { CEITR }
\end{array}
$$

rood qualifl

GRODP	1	. 03	. 04	. 02	. 02	. 09	. 08	. 14	. 07			. 50	3.63
Groop	2	. 02	. 06	. 05	. 02	. 03	. 04	. 11	. 04			. 31	2.66
6ROJP	3	. 21 .	. 28	. 27	. 32	.33	.42	. 27	.13	. 04		2.21	18.57
GROOP	4	. 02	. 03	. 08	. 03	. 06	. 13	. 05	. 14			. 54	3.97
GROUP	5	. 01	.01	. 01	. 01	. 03	. 02		. 03			. 12	. 84
group	6	. 39	. 50	. 47	. 53	. 36	. 73	. 40	. 59	. 05	. 05	4.07	29.66
GRODP	7	. 62	. 67	. 58	. 86	. 94	. 68	. 64	. 54	.09		5.61	40.95
GROOP	8	.04	. 04	. 03	. 01	. 02		. 06	. 03			. 24	1.72
YOFAL PER	El	1,33	1.64	1.51	1.80	1.84	2.11	1.68	1.57	, 17	. 05	13.71	100.00
PER CEIT		9.69	11.97	11.04	13.13	13.44	15.38	12.25	11.48	1.27	. 36	100.00	

I. 11 ITTABSTD: A stand table, volume.

OGRAK IfPABSFD
RESFRI DRPARYMEMP E.Q. IITFO, KOALA LOAPOR

DAFE : 20/07/1993
pht02.921 bloasrated: 1992, sumgei lalang R.R., sblangor LOCE =ALL BLOCKS
orest CLass $=$ ALL CLASSES PB IDEHIIII CLASS * 111

TRHF. 02 : COT MLL $>=45 \mathrm{CK}$

IAGE vaRIABLE MOP USED
mean volohe pgr becrars (cubic hbfrbs) DIAMEBRR CLASSES II CBMTIHBTRES

$$
\begin{array}{rrrrrrrrrrrrr}
5.0 & 10.0 & 15.0 & 20.0 & 25.0 & 30.0 & 35.0 & 40.0 & 45.0 & 50.0 & 55.0 & \text { YOFAL } & \text { PRR- } \\
-9.9 & -14.9 & -19.9 & -24.9 & -29.9 & -34.9 & -39.9 & -44.9 & -49.9 & -54.9 & + & & \text { CRIT }
\end{array}
$$

1000 gUALIPI

groop	1	. 08	.17	. 13	. 13	. 86	. 72	1.26	. 58		3.91	16.17
grous	2	. 06	. 25	. 42	. 29	. 20	. 36	. 92	. 44		2.93	10.62
GRODP	3	. 52	1.09	1.64	2.23	2.35	3.85	2.58	1.14	. 35	15.75	57.03
GRODP	4	. 05	. 33	. 46	. 19	. 54	1.00	. 47	1.15		4.20	15.18
GROUP	5.	. 02	. 04	. 03	.06	. 20	. 19		. 28		. 83	3.00
YOPAL REI	Hi.	. 72	1.89	2.68	2.90	4.16	6.11	5.22	3.59	. 35	27.63	100.00
PIR CEIT		2.61	6.83	9.69	10.51	15.04	22.12	18.90	13.01	1.28	100.00	

I. 12 ITTABWQS : Part of a stand table by species.
progra iffraugs
joinf Iffo/kRLASSIA project

```
#:2:S MANDPNBLE****
    DAFB : 20/01/1993
```



```
    BLOCK = MLL BLOCKS
    lorgSY CLASS = ALL CLASSES
    StEM DEHTIPY CLASS : 111
```



```
    sf CIBS LISt : CRBCX Oll spBCIBS.
    # sbluciton Mo. OR goaqrars; 100, arba; 4.00 #a.
```

hean nukber of erebs pbr abctare diameprr classes in cbifikefres

5.0	10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	coral
-9.9	-14.9	-19,9	-24.9	-29.9	-34.9	-39.9	-44.9	-49.9	-54.9	+	

SPBCIBS CODE


```
I.13.1 ITTABSAP : A stand table, saplings.
```

PROGRAM İTTABSAP
JOINT MALAYSIA - ITTO PROJECT
SLTMTO2.922 ENUMERATED: 1992 SUNGEI LALANG F.R., SELANGOR
TREATMENT : $02=$ CUT AL工 $>=45 \mathrm{CM}$
BLOCK $=$ ALL BLOCKS
EOREST CLASS $=$ AL工 CLASSES
STEM IDENTITY CLASS $=211$
ALL VIGOUR CLASSESS
 SPECIES LIST : NO SP. CHECK NUMBER OF SUBPLOTS : 36 ENUMERATED AREA : . 0900 HA.

MEAN NUMBER OF STEMS PER HECTARS DIAMETER CLASSES IN CENTIMETRES

$$
\begin{array}{rrrlrl}
.0 & 2.0 & 3.0 & 4.0 & \text { TOTAL } & \text { PER- } \\
-1.9 & -2.9 & -3.9 & + & & \text { CENT }
\end{array}
$$

WOOD QUALTTY GROUP

GROUP	1	211.1		11.1	11.1	233.3	7.2
GROUP	2	211.1			11.1	222.2	6.9
GROUP	3	300.0		22.2		322.2	10.0
GROUP	4						
GROUP	5	33.3				33.3	1.0
GROUP	6	500.0	44.4	66.7	55.6	666.7	20.6
GROUP	7	877.8	188.9	188.9	111.1	1366.7	42.3
GROUP	8	333.3	22.2	22.2	11.1	388.9	12.0
TOTAL	PER HA.	2466.6	255.5	311.1	200.0	3233.3	100.0
PER CEN		76.3	7.9	9.6	6.2	100.0	

76.3
7.9
9.6
6.2100 .0
I.13.2 ITTABSAP : Height table for planted wildings.

PROGRAM ITTIABSAP
JOINT MALAYSIA - ITTO PROJECT
IETMTO 9.924 ENUMERATED: 1992 LESONG F.R., PAHANG
TREATMENT : $07=$ CUT ALL $>=30 \mathrm{CM} /$ PLANT WILDLING
BLOCK $=$ ALL BLOCKS
FOREST CLASS
= ALL CLASSES
STEM IDENTITY CLASS
= 311
ALL VIGOUR CLASSES

SPECIES LIST NUMBER OF SUBPLOTS : 68 ENUMERATED AREA : 4.0000 HA. HEIGHT CLASSES IN METRES

.0	1.0	2.0	3.0	TOTAL	PER-
-.9	-1.9	-2.9	+		CENT

WOOD QUALITY GROUP
GROUP 1
$73.0 \quad 125.0$
$57.2 \quad 10.7 \quad 266.0$
64.2

GROUP 2
21.7
27.2
1.2
50.2
12.1

GROUP 4
45.0
34.5
16.0
2.7
98.2
23.7

TOTAL PER HA.
$\begin{array}{llllll}139.7 & 186.7 & 74.4 & 13.4 & 414.4 & 100.0\end{array}$
PER CENT
33.7
45.0
18.0
3.2
99.9
I. 14 ITHEIGHT : A table of tree heights (number of logs).
prograk : Iflicight
?ORBSYRY DEPARTAEMF 㫙, IFFO, BUALA LOMPUR
ISSBARCA PLOP ; SLTMY08.921
frak Iorimifl class =111
MLI LOG GRADES \& AMD ?

DAPE : 21: 7:1993
number of logs by diamberp class

avaragb rukbar or logs 15-CH DIAKETER CLaSSES

	15.0	30.0	45.0	60.0	75.0	90.0	105.0	120.0	135.0	150.0	165.0	180.0	kEal mo. Ot logs
OD QUALITY	29.9	44.9	59.9	74.9	89.9	104.9	119.9	134.9	149.9	164.9	179.9	+	POTAL MO OL PRESS
SOP 1	1.1.	2.4	2.4	3.0	3.0	3.0	3.3	2.3	. 0	. 0	. 0	3.3	2.1
O1 PRESS	28	5	5	3	1	4	8	3	0	0	0	3	66
1092	1.1	2.2	2.6	4.0	2.8	3.0	2.0	3.5	2.0	. 0	. 0	. 0	1.9
OP PRESS :	30	6	8	1	5	3	2	2	1	0	0	0	58
IOP 3	1.1	1.8	2.6	2.7	3.0	. 0	. 0	. 0	. 0	. 0	. 0	. 0	1.3
O1 Prass 1	321	50	19	3	3	0	0	0	0	0	0	,	396
IP 4	1.1	1.4	2.5	2.0	3.0	. 0	. 0	. 0	. 0	. 0	. 0	. 0.	1.3
01 frabs :	44	16	2	3	1	0	0	0	0	0	0	0	66
OP 5	1.0	2.3	1.8	3.0	2.0	. 0	.0	. 0	. 0	. 0	. 0	.0	1.5
OP PRESS	21	6	11	2	1	0	0	0	0	0	0	0	11
IP 6	1.0	1.6	2.0	2.4	2.2	3.0	2.5	. 0	. 0	. 0	. 0	. 0	1.2
31 IRESS :	595	89	43	14	5	2	2	0	-	0	0	0	150
IP 7	1.1	1.6	1.9	2.7	2.0	3.0	2.0	. 0	. 0	. 0	. 0	. 0	1.2
If frges :	501	63	19	1	3	2	1	0	0	0	0	0	596
110. OP LOGS	1.1	1.7	2.2	2.6	2.6	3.0	2.8	2.8	2.0	. 0	. 0	3.3	1.3
L HO OI PRESS:	1606	243	110	35	25	11	13	5	1	0	0	3	1973

I. 15 ITSPSUM : Species summary, where range was given as 5, 11

PROGRAM ITSPSUM
DATE : 21/07/1993
SUMMARY OF THE OCCURANCE OF SPECIES (GENERA) FOR SELEETTED FOREST AREAS
FOREST / TRMT : SLTMT01 SLTMT02 SLTMT03 SLTMTO4 SLTMTO5 SLTMT06 SLTMT08
ENUMERATED YEAR: .921 .921 .921 .921 .921 .921 . 921

| AREA (HA): | 28.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | SPECIES TOTAL

31901 Calophyllum spp.
$13.64 \quad 14.61 \quad 13.17$
8.50
9.00
$5.28 \quad 12.44$
32.47

33201 Famlly of burseraceae
$26.82 \quad 10.94 \quad 28.61$
15.9424 .00
37.92
31.58
38.75

5101 Annonaceae spp.
$26.49 \quad 26.47 \quad 26.47$
26.97
22.50
13.17
22.61
47.25

5801 Family of sapotaceae
$12.31 \quad 8.81 \quad 16.22$
7.28
10.19
10.47
11.56
21.67

63001 Pometia spp.
$13.91 \quad 10.19 \quad 6.61$
13.72
25.69
7.17
12.83
21.14

3101 Diospyros spp.
$12.73 \quad 9.39 \quad 10.14$
7.81
18.25
8.11
12.22
23.22

65001 Lithocarpus spp.
$11.56 \quad 7.50$
11.39
$9.69 \quad 12.83$
12.39
8.06
19.03

65701 Xanthophyllum spp.
$12.75 \quad 15.44 \quad 11.42$
14.508 .19
12.17
13.11
14.44

66201 Family of Myristicaceae
$16.96 \quad 8.42 \quad 24.31$
9.11
11.33
14.81
22.36
28.39

73501 Eugenia spp.
$78.40 \quad 62.19 \quad 75.50$
84.67
79.44
71.17
70.33105 .50

8635 Barringtonia spp.

$$
\begin{array}{lll}
7.12 & 8.69 & 5.36
\end{array}
$$

8.64
10.72
1.44
6.06
8.94

78670 Millettia atropurpurea

$$
\begin{array}{lll}
6.22 & 6.11 & 14.00
\end{array}
$$

3.08
3.14
6.28
3.58

7:36
$8 \quad 4301$ Vitex spp.
$11.38 \quad 7.19 \quad 6.81$
4.47
7.06
8.25
4.72
41.19

84601 Macaranga spp. $11.35 \quad 14.25$
5.81
10.58
10.28
16.67
7.44
14.44
$\begin{array}{lllllllll}\text { NOT FOUND } & .00 & .00 & .00 & .00 & .00 & .00 & 2.78 & 5.56\end{array}$
$\begin{array}{lllllllll}\text { TOT SPEC. } & 152.00 & 83.00 & 100.00 & 84.00 & 88.00 & 77.00 & 91.00 & 105.00\end{array}$
I. 16 ITGROEDT : List of inconsistencies and "new recruits".

```
'ROGRAM ITGROEDT FORESTRY DEPARTMENT H.Q., JOINT MALAYSIA - ITTO PROJECT
                                    *** LIST OF INCOMPATIBLE TREES ***
ESEARCH PLOT : PITMTO2
21/ 7/1993 PAGE : 1
ASEYEAR = 1992
STEM ID. CLASS (SIC) IN BASEYEAR = 111 (LIVING - STANDING - COMPLETE)
WQ = WOOD QUALITY GROUP/SPECIES CODE, TR = TREE NO., L = RECORD NO., D = DIAM (MM)
(BASEYEAR INFO)
UADRAT TR.NO. SPECIES CODE 1991
BASE YEAR
    1992
```

```
202 3 8 7 8655
anggis. M. hutan, Kandis
202 5 6 6 4801
sdang, M. pepijat
002 5 14 36001
long
:02 6 % 8 2 501
irsawa
0219 7 64801
dang, M. pepijat
02 23 3 3 5101
SIC131 WQ78655 DIAM : }15
    TR: 8 L: }25\mathrm{ TR: }8\textrm{L}:2
    84601 D: }167\mathrm{ DIAM : 175
    TR: 6 L: 45 TR: 6 L: 46
    88001 D: 240 DIAM : 262
    TR: 14 L: }53 TR:14 L: 54
SIC131 WQ2 501 DIAM : 263
    TR: 8 L: 61 TR: 8 L: 63
    66801 D: 69 DIAM : 77
    TR: }7\textrm{L}:343 TR: 7 L: 350
53401 n. nrm
mpisann
```

RESEARCH PLOT : PITMTO2
PAGE : 3
LIST OF NEW RECRUITS BY SPECIES IN BASEYEAR : PITMTO2.921
ACTUAL NUMBER $>5 \mathrm{CM} />15 \mathrm{CM}$ BETWEEN 1992 AND SINCE :
WQ SPCODE
1991
35801 Nyatoh 1
43902 Tualang 1
63001 Kasai 2
64801 Medang, M. pepijat $\quad 3$
65701 Minyak berok : 1
66201 Penarahan 1
68401 Terap 1
73501 Kelat 2
76401 Perah 1
77301 Rambutan 1
78635 Putat 1
79999 Lain-lain 8
84301 Leban 1
84401 Ludai 1
84601 Mahang, Mersepat 1
NUMBER OF GENERA/SPECIES :

```
I. }17\mathrm{ ITGROWTH : A growth table.
```

prograhks : Ifgronfy
NOMBER OI PRESS BICLODED $=0$

MORBSTRI DGPARTKEME h.Q. / IFTO
*HITGRONTH**
PITMY01.901 BASB TEAR 1991.08 PIAR I.R., PERAK
PITMFOL.921 GROHYE YBAR 1992.86 GROIFH PERIOD $=1.78$ YEARS
BLOCK $=$ RLL BLOCRS
PORBSF CLASS : ALL CLASSBS
STBM IDRRFITY CLASS $=111$
GIMIMOH GRONEG $:-10$ MAXIMOK GROPTH $=50$

SPBCIBS LIST : NO CBECKS KADB
VARIABLE NOP USED
kEAR ARMDAL DIAMBPBR IMCREKERY IA CEMPIMBPRES
diambitr classbs in cemfinetrbs
nOOD QUALIFT
1

10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	aFER-

- 1

LIVIMG FREBS PBR 日A.
DGAD, PRLLEN OR BRORER
hean armoll horpaliyy pce.

2

1.18

LIVING PRESS PBR HA.
DEAD, MALLER OR BRORBM
MEAM AMPOAL MORPALITY PCF.

DBAD, PALLER OR BRORBR
hBer hmohl horyality pcy.

5		1.51	1.08					.76 2.59
LIVING FRBES PER HA.	. 93	. 33	1.33				. 33	. 61
DEAD, EALLEM OR BROREM	. 33						56.18	11.19
mear ammal horialify pcy.	56.18							
6	. 82	. 83	. 64	¢.68	. 56			. 11
	26.85	15.00	10.33	6.00	1.00		. 33	59.52
DBAD, PALLER OR BROKBH	2.78	2.00	1.67	1.33	1.00	. 33		9.11
MBAI AnROLL HORTALITY PCP.	5.27	6.61	7.80	10.21	56.18	56.18		. 46

7	. 86	. 49	76	. 68	38							
LIVIMG PRESS PER MA.	21.30	13.33	16.67	10.00	2.00							. 71
OBAD, PALLER OR BROEES	. 93	3.00	2.67	. 67	1.67	. 33	1.33	67				63.30
MERE AMAOAL MORYALITY PCY.	2.34	10.32	7.15	3.51	25.54	56.18	56.18	56.18	. 56.18	56.33	. 67	12.59

8	2.84	1.44	. 17	1.69
LIVIRG ERERS PRR HA.	. 67	1.00	. 33	2.00
DBAD, EALLER OR BRORB		. 33		. 33
hgan ammul horialify PCs.		14.04		8.03

FOFAL : AVERAGE PER GA.	. 94	. 12	. 78	. 12	. 69		2.12					. 81
LIVIMG FREES PER MA.	62.04	41.00	34.67	22.00	5.33		. 33					165.70
dgad, ialleg or brorem	5.56	5.67	5.00	2.33	2.33	2.67	1.33	. 67	. 33	. 67	1.00	27.56
heal ammul hortalift pCt.	4.62	6.82	7.08	5.39	17.10	56.18	41.94	56.18	56.18	56.18	42.13	8.01

I. 18 ITINGROW : An ingrowth table.

prograk itingron									
POR8STRY DEPF. R.O., joinf Ifforhalarsia projbct				Ars 21/07/1993			PAGE 1		
PIPMP01.921 BASE TRAR 1992.86 PIAR P.R., PBRAK					PRHP = 1:COT MLL > 30 CH				
BLOCK = ALL BLOCRS									
forbst class * MLL Classbs									
STBK IDBMIIPY CLASS $=111$									
SPBCIBS LIStPAGE VARIABLE NOP OSBD									

TOFAL NO. OI ME RBCROITS IROK 90 YO 92 diamergr classbs in cbhyinetres, hyeragb prr ha
nood guality

15.0	17.0	19.0	21.0	23.0	25.0	21.0	29.0	31.0	33.0	35.0 REAN ARMU
-16.9	-18.9	-20.9	-22.9	-24.9	-26.9	-28.9	-30.9	-32.9	-34.9	+
INGRONYR										


```
I.19 ITGRORAT : A table of growth rates.
```


OHPB RAfES hH
80
ving prbes per ha.
$=0$
uing frebs pgr ha.
$0<2$
IIMG PRBES PBR RA.
2 (1
IIRG PRBES PBR MA.
$4<6$
tilg frbes pbr ma.
$6<8$
IIG PRBES PER AA.
8 < 10
ing trebs prr ha.
10<12
thg fress prr ha.
12 é
ing frebs pbr ma.
age grourt rats : ng friss Pbr ba.

PALLER OR BROREA	5.56	5.67	5.00	2.33	2.33	67	1.33	167	33	67	1.00	56
ammal morthlify pct	4.62	6.	7.	5.39	11.	56.18	44.94	56.18	18	18	42.13	8.0

10.0	15.0	20.0	25.0	30.0	35.0	40.0	45.0	50.0	55.0	60.0	AVER-	PRR-
-14.9	-19.9	-24.9	-29.9	-34.9	-39.9	-44.9	-49.9	-54.9	-59.9	+	AGB	CBMF
	-. 15	-. 33	-. 56	-. 45							-. 32	
	2.33	3.33	1.00	1.00							7.67	4.63

I. 20 ITSELECT : Documentation of output.

BASE YBAR : PIPMPOL.901 BNURERAPED: 1990 DRCIMAL DAYE: 91.08

RUMBER OP RBCORDS SBLBCYBD PRON BASBYBAR = 5
OI WHICH 5 MBRE OUPPOY ARD O BICLUDED
BLOCE = ALL BLOCKS
lorssp class * all classbs
spen idertity chass = 111
MIMIMUM DIAKBPER $=50$
MAIIMDH DIAKBPRR $=2000$
MOOD QUALIPE GROUP $=1,2$
SPBCIBS LIST : ALL SPBCIBS
far polloving variablis have bera includgd por basbyar :

BLOCK
STEM IDBATITI CLASS
YOOD POALIPY GROUP
parily
GBMRRA
DIAKBYBR DBHob
LOG QUALIFT
sPGM DAMAGE
cromf dakage
fab pollorimg variables anve bebr included por
GROMfH YBAR BHUMBRATBD ; 1991 DBCIMAL DAYE $=91.87$

STBH IDERTITY CLASS
DIAMBTBR DBHob
log QUALITY
STEK DAHAGB
croni dahagb
fas polloulag variables have bebn included for
GROUTH YBAR BHUHBRATBD 1992 DBCIMAL DATB $=92.86$
ster idertity class
diambibr dbhob
log goality
STBM DAHAGB
CRORA DAHAGR

OUPPUY PILB = STATYO2.DAT

* BND OF LISY *"

Appendix II : Listing of Support Data Files.
The Support Data Files contain different lists like Forest Classes, Species codes etc. and are used by the programmes for checking and for printed output.

In order to ease the documentation some of the lists exist in two versions :

- A version to be used for computer processing with the file name extension ofDAT
- A version to be used by Word Perfect for documentation with the file name extension ofLIS

When changes or additions are made, remember to update both versions.

The species list also exist in two other versions : The complete species list SPECIES.LIS that contain multiple entries where the same species has several vernacular names used in the field. And the SPECIES.DAT that is used during processing and only contain one entry per code number.

```
    - 76 -
II.1 List of Forest Classes, FDAFCL.DAT
    (Not yet adapted)
```

II. 2 List of Stem Identity Classes, ITSICTXT.DAT and
ITSICTX2.DAT
111 TREE ALIVE- STANDING- COMPLETE TRUNK
112 TREE ALIVE- STANDING- BROKEN STEM
113 TREE ALIVE- STANDING- BROKEN STUMP
114 CUT STUMP- STANDING- ALIVE
115 TREE ALIVE- STANDING- POISSON GIRDLED
119 TREE ALIVE- StANDING- NOT FOUND
121 TREE ALIVE- FALLEN- COMPLETE TRUNK
122 TREE ALIVE- FALLEN- BROKEN STEM
123 TREE ALIVE-FALLEN- BROKEN STUMP
124 CUT STUMP- FALLEN - ALIVE
125 TREE ALIVE- FALLEN- POISSON GIRDLED
129 TREE ALIVE-FALLEN- NOT FOUND
131 TREE DEAD- STANDING- COMPLETE TRUNK
132 TREE DEAD- STANDING- BROKEN STEM
133 TREE DEAD- STANDING- BROKEN STUMP
134 CUT STUMP- STANDING- DEAD
135 TREE DEAD- STANDING- POISSON GIRDLED
139 TREE DEAD- STANDING- NOT FOUND
141 TREE DEAD- FALLEN- COMPLETE TRUNK
142 TREE DEAD- FALLEN- BROKEN STEM
143 TREE DEAD- FALLEN- BROKEN STUMP
144 CUT STUMP- FALLEN- DEAD
145 TREE DEAD- FALLEN- POISSON GIRDLED
411 PALM ALIVE-. StANDING- SINGLE TRUNK
412 PALM ALIVE- STANDING- CLUMP/CLUSTER
413 PALM ALIVE- StANDING- STEMLESS
211 SAPLING-STANDING LIVING-COMPLETE TRUNK
212 SAPLING-STANDING LIVING-BROKEN STEM
214 SAPLING-STANDING LIVING-CUT STUMP
216 SAPLING-GROWN TO POLE OR TREE SIZE
219 SAPLING-NOT FOUND
221 SAPLING-FALLEN LIVING-COMPLETE TRUNK
222 SAPLING-FALLEN LIVING-BROKEN STEM
224 SAPLING-FALLEN LIVING-CUT STUMP
231 SAPLING-DEAD-STANDING
232 SAPLING-DEAD-BROKEN STEM
234 SAPLING-DEAD CUT STUMP
241 SAPLING-DEAD-FALLEN
311 SEEDL.-STANDING LIVING-COMPLETE STEM
312 SEEDL.-STANDING LIVING-BROKEN STUMP
314 SEEDL.-STANDING LIVING-CUT STUMP
318 SEEDL. -NOT PLANTED
319 SEEDL.-NOT FOUND
331 SEEDL.-DEAD
511 MEDIUM PALM- LIVING- SINGLE STEM
512 MEDIUM PALM- LIVING- CLUMP/CLUSTER
513 MEDIUM PALM- LIVING- STEMLESS
611 SMALL PALM- LIVING- SINGLE STEM
612 SMALL PALM- LIVING- CLUMP/CLUSTER
613 SMALL PALM- LIVIHG- STEMLESS
II. 3 Species List, SPECIES.DAT

This species list is sorted by code number and contain one entry per code no. The species list with multiple entries sorted by vernacular name is given in the "Manual of Instructions for Enumerating the Permanent 'ITTO' Experimental Plots", Field Document No. 1.

Code Vernacular Name

10101 Meranti Merah Tua
10102 Meranti bukit
10103 Meranti nemesu
10104 Meranti sengkawang bulu
10105 Meranti sengkawang merah
10106 Meranti seraya
10107 Meranti seraya daun besar
10201 Meranti Merah/Merah Muda
10202 Meranti bakau
10203 Meranti batu
10204 Meranti bunga
10205 Meranti daun besar
10206 Meranti kepong
10207 Meranti kepong hantu
10208 Meranti langgong
10209 Meranti paya
10210 Meranti pepijat
10211 Meranti rambai daun
10212 Meranti sarang punai
10213 Meranti sarang punai bukit
10214 Meranti tembaga
10215 Meranti tengkawang ayer
10301 Meranti Putih
10302 Meranti belang
10303 Meranti bumbong
10304 Meranti jerit
10305 Meranti lapis
10306 Meranti laut
10307 Meranti mengkai
10308 Meranti pa'ang
10309 Meranti pipit
10310 Meranti temak
10311 Meranti temak nipis
10401 Meranti Kuning/Damar Hitam
10402 Damar hitam bulu
10403 Damar hitam gajah
10404 Damar hitam katup
10405 Damar hitam kelim
10406 Damar hitam pipit
10407 Damar hitam sengkawang putih
10408 Damar hitam siput
10409 Damar hitam siput besar 10410 Damar hitam siput jantan 10411 Damar hitam telepok

Scientific Name

Shorea spp. (Dark red)
Shorea platyclados
Shorea pauciflora
Shorea sinkawang
Shorea sinkawang
Shorea curtisii
Shorea curtisii
Shorea spp. (Red/light red)
Shorea uliginosa
Shorea dasyphylla
Shorea teysmanniana
Shorea hemsleyana
Shorea ovalis
Shorea macrantha
Shorea lepidota
Shorea platycarpa
Shorea johorensis
Shorea acuminata
Shorea parvifolia
Shorea ovata
Shorea leprosula
Shorea palembanica
Shorea spp. (White)
Shorea resinosa
Shorea dealbata
Shorea henryana
Shorea lamellata
Shorea gratissima
Shorea bentongensis
Shorea bracteolata
Shorea assamica
Shorea hypochra
Shorea roxburghii
Shorea spp. (Yellow)
Shorea longisperma
Shorea gibbosa
Shorea dolichocarpa
Shorea blumutensis
Shorea multiflora
Shorea maxima
Shorea faguetiana
Shorea kuantanensis
Shorea hopeifolia
Shorea peltata
20501 Mersawa
20502 Mersawa durian
20503 Mersawa gajah
20504 Mersawa kesat
20505 Mersawa kuning
20506 Mersawa merah
20507 Mersawa paya
20601 Merawan
20602 Merawan batu
20603 Merawan bunga
20604 Merawan daun bulat
20605 Merawan gunong
20606 Merawan jangkang
20607 Merawan jantan
20608 Merawan jeruai
20609 Merawan kelabu
20610 Merawan mata kucing beludu
20611 Merawan mata kucing bukit
20612 Merawan mata kucing hitam
20613 Merawan mata kucing merah
20614 Merawan mata kucing pipit
20615 Merawan meranti
20616 Merawan palit
20617 Merawan penak
20618 Merawan siput
20619 Merawan siput jantan
20620 Merawan ungu
20701 Gerutu
20702 Gerutu gerutu
20703 Gerutu pasir
20704 Gerutu pasir daun besar
20801 Keruing (Berminyak)
20802 Keruing bulu
20803 Keruing gombang
20804 Keruing gondol
20805 Keruing kertas
20806 Keruing merah
20807 Keruing sol
20808 Keruing ternek
20809 Keruing etoi
20810 Keruing mempelas
20901 Keruing (Tidak Berminyak)
20902 Keruing baran
20903 Keruing beledu
20904 Keruing belimbing
20905 Keruing bukit
20906 Keruing cogan
20907 Keruing gasing
20908 Keruing gombang merah
20909 Keruing gunong

Anisoptera spp.
Anisoptera laevis
Anisoptera scaphula
Anisoptera costata
Anisoptera curtisii
Anisoptera megistocarpa
Anisoptera marginata
Hopea spp. (Merawan)
Hopea beccariana
Hopea pubescens
Hopea latifolia
Hopea montana
Hopea nervosa
Hopea griffithii
Hopea lanceolata
Hopea cescens
Hopea myrtifolia
Hopea cellata
Hopea dryobalanoides
Hopea ferruginea
Hopea johorensis
Hopea sulcata
Hopea dyeri
Hopea mengarawan
Hopea sangal
Hopea odorata
Hopea bracteata
Parashorea spp.
Parashorea stellata
Parashorea densiflora
Parashorea globosa
Dipterocarpus spp. (oily)
Dipterocarpus baudii
Dipterocarpus cornutus
Dipterocarpus kerrii
Dipterocarpus chartaceus
Dipterocarpus verrucosus
Dipterocarpus lowii
Dipterocarpus palembanicus
Dipterocarpus dyeri
Dipterocarpus crinitus
Dipterocarpus spp. (non-oily)
Dipterocarpus eurynchus
Dipterocarpus obtusifolius
Dipterocarpus grandiflorus
Dipterocarpus costatus
Dipterocarpus rigidus
Dipterocarpus caudatus
Dipterocarpus kunstleri
Dipterocarpus retusus
20910 Keruing kelabu
20911 Keruing kerut
20912 Keruing kesat
20913 Keruing kipas
20914 Keruing latek
20915 Keruing mengkai
20916 Keruing neram
20917 Keruing padi
20918 Keruing paya
20919 Keruing perak
20920 Keruing pipit
20921 Keruing ropol
20922 Keruing sarawak
20923 Keruing sendok
21001 Kapur
21002 Keladan
21101 Balau
21102 Balau bukit
21103 Balau gajah
21104 Balau gunong
21105 Balau hitam
21106 Balau kumus
21107 Balau kumus hitam
21108 Balau kuning
21109 Balau laut
21110 Balau laut merah
21111 Balau membatu
21112 Balau membatu jantan
21113 Balau merah
21114 Balau pasir
21115 Balau putih
21116 Balau sengkawang ayer
21117 Balau sengkawang darat
21118 Balau tembaga

21201 Chengal

21301 Giam
21302 Giam bayan
21303 Giam hantu
21304 Giam jantan
21305 Giam kanching
21306 Giam lintah bukit
21307 Giam malut
21308 Giam melukut
21309 Giam palong
21310 Giam rambai
21401 Resak
21402 Resak bukit
21403 Resak tempurong
21404 Resak buah kana
21405 Resak daun panjang
21406 Resak daun runcing

Dipterocarpus pseudofagineus
Dipterocarpus sublamellatus
Dipterocarpus gracilis
Dipterocarpus costulatus
Dipterocarpus apterus
Dipterocarpus rotundifolius
Dipterocarpus oblongifolius
Dipterocarpus semivestitus
Dipterocarpus coriaceus
Dipterocarpus perakensis
Dipterocarpus fagineus
Dipterocarpus hasseltii
Dipterocarpus sarawakensis
Dipterocarpus concavus
Dryobalanops aromatica
Dryobalanops oblongifolia
Shorea spp. (Balau group)
Shorea foxworthyi
Shorea submontana
Shorea astylosa
Shorea atrinervosa
Shorea laevis
Shorea maxwelliana
Shorea falcifera
Shorea glauca
Shorea kunstleri
Shorea guiso
Shorea ochrophloia
Shorea collina
Shorea materialis
Shorea lumutensis
Shorea sumatrana
Shorea scrobiculata
Shorea exelliptica

Neobalanocarpus heimii

Hopea nutans (Giam)
Hopea pachycarpa
Hopea coriacea
Hopea semicuneata
Hopea subalata
Hopea helferi
Hopea ferrea
Hopea apiculata
Hopea pierre
Hopea polyalthioides
Cotylelobium spp. \& Vatica spp
Cotylelobium malayanum
Cotylelobium melanoxylon
Vatica ridleyana
Vatica nitens
Vatica cuspidata
21407 Resak degong
21408 Resak gajah
21409 Resak gunong
21410 Resak julong
21411 Resak kecil
21412 Resak keluang
21413 Resak langgong
21414 Resak laru
21415 Resak laut
21416 Resak letop
21417 Resak lidi
21418 Resak mempening
21419 Resak padi
21420 Resak paya
21421 Resak pipit
21422 Resak putih
21423 Resak ranting kesat

31701 Bengang

31901 Bintangor
31902 Bintangor batu
31903 Bintangor bukit
31904 Bintangor bunga
31905 Bintangor bunut
31906 Bintangor daun karat
31907 Bintangor daun panjang
31908 Bintangor gambut
31909 Bintangor gasing
31910 Bintangor gunong daun besar
31911 Bintangor gunong daun kecil
31912 Bintangor jangkang
31913 Bintangor kelim
31914 Bintangor kuning
31915 Bintangor laut
31916 Bintangor lekok
31917 Bintangor lilin
31918 Bintangor merah
31919 Bintangor putih

32101 Damar minyak
32301 Durian, D. hantu
32302 Durian batang
32303 Durian beludu
32304 Durian bujor
32305 Durian daun
32306 Durian daun besar
32307 Durian daun tajam
32308 Durian ijau laut
32309 Durian kampong
32310 Durian merah
32311 Durian paya
32312 Durian tupai

Vatica havilandii
Vatica sp. 'A'
Vatica heteroptera
Vatica mangachapoi
Vatica pallida
Vatica belia
Vatica scortechinii
Vatica pauciflora
Vatica cinerea
Vatica venulosa
Vatica maingayi
Vatica stapfiana
Vatica flavida
Vatica lobata
Vatica lowii
Vatica perakensis
Vatica odorata
Neesia spp.
Calophyllum spp.
Calophyllum inophylloide
Calophyllum symingtonianum
Calophyllum curtisii
Calophyllum macrocarpum
Calophyllum rubiginosum
Calophyllum incrassatum
Calophyllum retusum
Calophyllum pulcherrimum
Calophyllum coriaceum
Calophyllum cuneatum Calophyllum sclerophyllum3
Calophyllum scriblitifolium
Calophyllum floribundum
Calophyllum inophyllum
Calophyllum depressinervosum
Calophyllum wallichianum
Calophyllum canum
Calophyllum alboramulum
Agathis borneensis
Durio spp.
Durio malaccensis
Durio oxleyanus
Durio singaporensis
Durio lowianus
Durio macrophyllus
Durio pinangianus
Durio wyatt-smithii
Durio zibethinus
Durio graveolens
Durio carinatus
Durio griffithii
Dacrydium spp.
32501 Geronggang
32502 Geronggang derum
32503 Geronggang derum bukit
32504 Geronggang derum seluncor
32505 Geronggang geronggang
32601 Jangkang, Banitan
32602 Jangkang bukit
32603 Jangkang paya
32801 Jelutong

33201 Kedondong
33202 Kedondong bulan
33203 Kedondong bulan bulu
33204 Kedondong gergaji
33205 Kedondong kemasul
33206 Kedondong keruing
33207 Kedondong putih
33208 Kedondong senggeh
33209 Kedondong kerut
33210 Kedondong matahari
33211 Kedondong mempelas
33212 Kedondong serong
33213 Kedondong kerantai
33214 Kedondong kerantai bulu
33215 Kedondong kerantai licin
33216 Kedondong sengkuang
33217 Kedondong kijai
33801 Kembang semangkok
33802 Kembang semangkok bulat
35813 Nyatoh taban putih
35814 Nyatoh tembaga
35809 Nyatoh semaram
33803 Kembang semangkok jantong
35807 Nyatoh surin
34101 Keredas
35805 Nyatoh pipit
34102 Kungkur
35804 Nyatoh jambak
34501 Machang
34502 Lanjut
35802 Nyatoh kabu
34503 Machang machang
34504 Mangga
34505 Rawa
35101 Mempisang
35801 Nyatoh
35802

Cratoxylum spp.
Cratoxylum formosum
Cratoxylum maingayi
Cratoxylum cochinchinense
Cratoxylum arborescens
Xylopia spp.
Xylopia ferruginea
Xylopia fusca
Dyera costulata
Family of burseraceae
Canarium littorale
Canarium littorale tomentosum
Canarium littorale forma
Canarium apertum
Canarium megalanthum
Canarium littorale forma
Canarium pseudosumatranum
Dacryodes rostrata
Dacryodes rugosa
Dacryodes laxa
Dacryodes puberula Santiria spp.
Santiria tomentosa
Santiria laevigata
Scutinanthe brunnea
Triomma malaccensis
Scaphium spp.
Scaphium linearicarpum
Scaphium macropodum
Pithecellobium bubalinum
Pithecellobium splendens
Mangifera spp.
Mangifera lagenifera
Mangifera longipes
Mangifera indica
Mangifera microphylla
Annonaceae spp.
Family of sapotaceae
Ganua motleyana
Palaquium reginamontium
Palaquium hexandrum
Palaquium xanthochymum
Palaquium sukoei
Palaquium microphyllum
Palaquium obovatum
Palaquium semaram
Palaquium rostratum
Palaquium impressinervium
Palaquium gutta
Palaquium oxleyanum
Palaquium maingayi

35815	Nyatoh .tembaga kuning	Palaquium hispidum
35816	Nyatoh durian	Payena maingayi
35817	Nyatoh ekor	Payena lanceolata
35818	Nyatoh sundek	Payena obscura
35819	Nyatoh nangka kuning	Pouteria malaccensis
35820	Nyatoh nangka merah	Planchonella maingayi
36001	Pelong	Pentaspadon spp.
36002	Pelong beludu	Pentaspadon velutinus
36003	Pelong licin	Pentaspadon motleyi
36901	Podo	Podocarpus spp.
36902	Podo bukit	Podocarpus neriifolius
36903	Podo cucor atap	Podocarpus imbricatus
36904	Podo kebal musang	Podocarpus motleyi
36905	Podo kebal musang gunong	Podocarpus wallichianus
36906	Podo laut	Podocarpus polystachy
37201	Punggai, Durian punggai	Ceolostegia griffithii
37202	Punggai daun besar	Ceolostegia borneensis
37401	Ramin	Gonystylus spp.
37402	Ramin dara elok	Gonystylus affinis
37403	Ramin daun tebal	Gonystylus brunnescens
37404	Ramin melawis	Gonystylus bancanus
37405	Ramin pinang muda	Gonystylus confusus
37406	Ramin pipit	Gonystylus maingayi
37901	Sepetir	Sindora spp.
37902	Sepetir beludu besar	Sindora velutina
37903	Sepetir daun nipis	Sindora echinocalyx
37904	Sepetir daun tebal	Sindora wallichii
37905	Sepetir licin	Sindora coriacea
37906	Sepetir mempelas	Sindora siamensis
38501 T	Terentang	Campnosperma spp.
38502	Terentang daun besar	Campnosperma auriculatum
38503	Terentang daun kecil	Campnosperma squamatum
38504 T	Terentang simpoh	Campnosperma coriaceum
43601 K	Keledang	Artocarpus spp.
43602 K	Keledang babi	Artocarpus anisophyllus
43603 K	Keledang bangkong	Artocarpus integer silvestris
43604 K	Keledang keledang	Artocarpus lanceifolius
43605 K	Keledang tampang	Artocarpus nitidus
43606 K	Keledang tampang bulu	Artocarpus dadah
43607 K	Keledang tampang gajah	Artocarpus fulvicortex
43608 K	Keledang tampang hitam	Artocarpus gomezianus
43609 T	Temponek, Keledang temponek	Artocarpus rigidus
43610 M	Miku	Artocarpus lowii
43611 N	Nangka	Artocarpus heterophyllus
43612 P	Pudu	Artocarpus kemando
43614 S	Sukun	Artocarpus communis
43901 K	Kempas	Koompassia malaccensis
43902 T	Tualang	Koompassia excelsa

45201	Mengkulang	Heritiera spp.
45202	Mengkulang jari	Heritiera javanica
45203	Mengkulang jari bulu	Heritiera sumatrana
45204	Mengkulang siku keluang	Heritiera simplicifolia
47101	Punah	Tetramerista glabra
48101	Simpoh	Dillenia spp.
48102	Simpoh ayer	Dillenia suffruticosa
48103	Simpoh beludu	Dillenia ovata
48104	Simpoh daun merah	Dillenia grandifolia
48105	Simpoh gajah	Dillenia reticulata
48106	Simpoh padang	Dillenia obovata
48107	Simpoh paya	Dillenia pulchella
48108	Simpoh putih	Dillenia albiflos
48109	Simpoh ungu	Dillenia excelsa
48660	Meransi	Carallia spp.
49101	Delek	Anisophyllea spp.
49105	Mata keli	Gynotroches spp.
49110	Membuloh	Pellacalyx spp.
50216	Meranti melantai	Shorea macroptera
52001	Bitis	Palaquium spp.
52002	Bitis bitis	Palaquium spp.
52003	Bitis bukit	Palaquium stellatum
52004	Bitis paya	Palaquium ridleyi
53401	Kekatong	Cynometra spp.
53402	Kekatong kekatong	Cynometra malaccensis
53403	Kekatong laut	Cynometra iripa
54001	Keranji	Dialium spp.
54002	Keranji bulu	Dialium kingii
54003	Keranji kuning besar	Dialium platysepalum
54004	Keranji kuning kecil	Dialium wallichii
54005	Keranji paya	Dialium patens
54006	Keranji tebal besar	Dialium laurinum
54007	Keranji tebal kecil	Dialium maingayi
54008	Keranji tunggal	Dialium procerum
55501	Merbau	Intsia palembanica
61801	Berangan	Castanopsis spp.
62201 D	Dedali	Strombosia javanica
62202 K	Kamap	Strombosia maingayi
63001 K	Kasai	Pometia spp.
63002 K	Kasai daun besar	Pometia pinnata
63003 K	Kasai daun kecil	Pometia pinnata alnifolia
63004 K	Kasai daun licin	Pometia ridleyi
63101 K	Kayu arang, Meribut, Tuba	Diospyros spp.
63613	Cempedak	Artocarpus interger
64201 K	Kulim	Scorodocarpus borneensis
64801 M	Medang, M. pepijat	Family of Lauraceae
64802 M	Medang payong	Actinodaphne maingayi
64803 M	Medang kemangi	Cinnamomum porrectum
64804 M	Medang teja	Cinnamomum javanicum
64901 M	Melunak	Pentace spp.

64902 Melunak bukit
64903 Melunak pusat beludu
65001 Mempening
65401 Merbatu
65402 Merbatu pipit
65601 Merpauh
65602 Merpauh daun runcing
65603 Merpauh daun tebal
65604 Merpauh periang, Pauh p.
65701 Minyak berok
65901 Pauh kijang
66201 Penarahan
66301 Penarahan arang
66302 Penarahan arang ayer
66303 Penarahan arang bukit
66304 Penarahan arang gambut
66801 Petaling
67501 Rengas
67502 Rengas ayer
67503 Rengas kerbau jalang
67701 sentang
68301 Tembusu
68302 Tembusu hutan
68303 Tembusu padang
68401 Terap
68402 Terap hitam
68403 Terap nasi
68404 Ipoh
71601 Ara berteh
71602 Ara berteh bukit
71603 Ara berteh paya
72701 Jelawai
72702 Jelawai jaha
72703 Jelawai ketapang
72704 Jelawai mempelam babi
72705 Jelawai mentalun
72901 Kasah, Kangsar
73301 Kekabu hutan
73501 Kelat
73502 Kelat gelam
73503 Kelat jambu laut
73504 Kelat merah
73505 Kelat paya
74103 Jering
74701 Mata ulat
75101 Antoi
75301 Mengkun
76101 Penaga
76401 Perah

Pentace curtisii
Pentace triptera
Lithocarpus spp.
Family of Atuna
Parinari costata
Swintonia spp.
Swintonia penangiana
Swintonia spicifera
Swintonia schwenkii
Xanthophyllum spp.
Irvingia malayana
Family of Myristicaceae
Myristica cinnamomea
Myristica elliptica
Myristica maingayi
Myristica lowiana
Ochanostachys amentacea
Family of Anacardiaceae
Gluta elegans
Gluta aptera
Azadirachta excelsa
Fagraea spp.
Fagraea gigantea
Fagraea fragrans
Family of Moraceae
Artocarpus scortechinii
Artocarpus elasticus
Antiaris toxicaria
Parartocarpus spp.
Parartocarpus bracteatus
Parartocarpus venenosus
Terminalia spp.
Terminalia subspathulata
Terminalia catappa
Terminalia phellocarpa
Terminalia calamansanai
Pterygota horsfieldii
Bombax valetonii
Eugenia spp.
Eugenia cerina
Eugenia grandis
Eugenia chorantha
Eugenia papillosa
Pithecellobium jeringa
Kokoona spp.
Cyathocalyx spp.
Tetrameles nudifelora
Mesua ferrea
Elateriospermum tapos

76501 Perah ikan
76601 Perupok
76701 Petai
76702 Petai kerayong
76703 Petai meranti
76704 Petai petai
77301 Rambutan
77302 Rambutan hutan
77303 Lotong, Sanggol lotong
77304 Redan
77305 Pulasan
77306 Rambutan pacat, Kikir buntal
77504 Rengas padi
77601 Sengkuang
77801 Sentul
78201 Surian
78202 Surian batu
78203 Surian bawang
78204 Surian wangi
78605 Bayur
78610 Chempaka
78615 Karas
78620 Kelumpang
78625 Sepul
78630 Mertas
78635 Putat
78640 Sena
78645 Melembu
78650 Bekak, Telur Belangkas
78655 Manggis, M. hutan, Kandis
78665 Samak, Kelat samak
78666 Samak pulut
78670 Tulang daing
78675 Pelawan
78680 Setumpul
78685 Tempinis
79201 Gelugor, Asam gelugor
79205 Asam pupoi
79210 Bayor bukit
79215 Bebusuk, Busok busok, Jahar
79220 Langsat, L. hutan, Duku h.
79225 Gapis
79230 Jelutong bedak
79235 Meraga
79240 Otak udang
79245 Pagar anak, Inggir burong
79250 Pepauh
79260 Tampoi, Rambai h., Setambun
79265 Rukam
79270 Saga, S. daun bulat
79275 Sendudok
79280 Tapak itik
79999 Lain-lain

Pimeleodendron griffithianum Lophopetalum spp.
Parkia spp.
Parkia javanica
Parkia singularis
Parkia speciosa
Sapindaceae spp.
Nephelium lappaceum
Nephelium spp.
Nephelium glabrum
Nephelium spp.
Xerospermum spp.
Melanochyla auriculata
Dracontomelon dao
Sandoricum koetjape
Cedrela/Toona spp.
chukrassia tabularis
Cedrela serrata
Cedrela sureni
Pterospermum spp.
Aromadendron elegans
Aquilaria malaccensis
Sterculia spp.
Parishia spp.
Ctenolophon parvifolius
Barringtonia spp.
Pterocarpus indicus
Scaphium javanicum
Aglaia (Amoora) spp.
Garcinia spp.
Theaceae spp.
Gordonia concen.
Millettia atropurpurea
Tristania spp.
Hydnocarpus spp.
Streblus spp.
Garcinia spp.
Sarcotheca spp.
Schoutenia spp.
Cassia spp.
Lansium spp.
Saraka spp.
Tabernaemontana spp.
Pertusadina spp.
Buchanania spp.
Ixonantes spp.
Iuodia spp.
Baccaurea spp.
Flacourtia spp.
Adenanthera
Astronia spp.
Euodia spp.
Misc. non-commercial spp.

81501 Ara, A. kelepong
83701 Kelempayan
84301 Leban
84401 Ludai
84601 Mahang, Mersepat
84602 Kubin, Mahang gajah
84603 Mahang merah
84604 Mahang putih
87001 Pulai
87002 Pulai basong
87003 Pulai penipu bukit 87004 Pulai penipu paya 87005 Pulai pulai
88001 Sesendok
89802 Balik angin
89805 Berembang bukit
89810 Gambir, G. hutan
89815 Hampas tebu
89820 Hujan panas
89825 Kenidai, Kernam
89830 Mengkirai, Menarong
89835 Mendong
89840 Nipis Kulit
89845 Sial menahun
89850 Tinjau Belukar
89855 Ubah

Ficus spp.
Anthocephalum chinensis
Vitex spp.
Sapium baccatum
Macaranga spp.
Macaranga gigantea
Macaranga triloba
Macaranga hypoleuca
Alstonia spp.
Alstonia spatulata
Alstonia macrophylla
Alstonia angustifolia
Alstonia angustiloba
Endospermum malaccense
Mallotus spp.
Duabanga spp.
Maesa spp.
Gironniera spp.
Breynia spp.
Bridellia spp.
Trema spp.
Eleocarpus spp.
Memecylon spp.
Pternandra spp.
Porterandia spp.
Glochidion spp.

II. 4 Example of a Command File, FCOMSTD.DAT

This example of FCOMSTD.DAT will yield a standtable containing the volumes of all species with Stem Identity Class = 111 , diameter DBHob of 30 cm and above in 5 cm diameter classes using the NFI 1 volume function for trees where number of logs is scored, there is no check against the species list.

```
FCOMSTD.DAT
    : Description
0,0,1 : all blocks, all FCL's, one SIC
111
300,50 : min dbh = 30 cm, diameter class interval = 5 cm
8,9 : Wood Quality Group by row, no page variable
8,0 : 8 Wood Quality Groups (all excl. palms), no page
1,2,3,4,5,6,7,8
0
2
3 : Use NFI 1 volume function, number of logs.
```

The command files are kept in $\backslash F O R T \backslash I T P R O G \backslash$
II. 5 List of Forest Locations, FORRESV.DAT

SL SUNGEI LALANG F.R., SELANGOR
LE LESONG E.R., PAHANG
CH CHERUL F.R., TERENGGANU
KS KLEDANG SAIONG F.R. PERAK
PI PIAH E.R., PERAK
II. 6 List of treatments applied, TABTREA.DAT

01 CUT ALL $>=30 \mathrm{CM}$
02 CUT ALL $>=45 \mathrm{CM}$
03 CUT DIPT> $=35 / \mathrm{NON}-\mathrm{DIP} .>=30 \mathrm{CM}$
04 CUT DIPT> $=50 /$ NON-DIP. $>=45 \mathrm{CM}$
05 CUT DIPT> $>=65 /$ NON-DIP. $>=60 \mathrm{CM}$
06 CUT DIPT> $>=75 /$ NON-DIP. $>=70 \mathrm{CM}$
07 CUT ALL $>=30 \mathrm{CM} / \mathrm{PLANT}$ WILDLING
08 NO LOGGING, VIRGIN CONTROL
11 CLIMBER CUTTING (CL)
12 GIRDLING + CLIMBER CUTTING (GCL)
13 GCL (+ ENRICHMENT PLANTING)
14 CUT ALL> $=30$ CM/PLANT WILDLING
15 CONTROL, LOGGED, NOT TREATED
16 ENRICHMENT PLANTING
II. 7 List of Dates of Enumeration, PIDATES.DAT

PITMTO1.901 91.08
PITMT01.911 91.87
PITMT01.921 92.86
To be expanded as required.
II. 8 Example of Filenames and Enumerated Area, ITSPSUM.DAT
'SLTMT01.921', 4.0
'SLTMT02.921', 4.0
'SLTMT03.921', 4.0
'SLTMT04.921', 4.0
'SLTMT05.921', 4.0
'SLTMT06.921', 4.0
'SLTMT08.921', 4.0
To be expanded as required.

Appendix III.
List of Treatments and Block Numbers by Research Area.
$L=$ Logging intensity and plantation establishment in a virgin forest. (Dipt = the botanical tree family Dipterocarpaceae)

Treatment

1) Cut all $>30 \mathrm{~cm} \mathrm{DBH}$
2) Cut all $>45 \mathrm{~cm} \mathrm{DBH}$
3) Cut Dipt $>35 \mathrm{~cm}$ DBH Non-Dipt $>30 \mathrm{~cm}$ DBH
4) Cut Dipt $>50 \mathrm{~cm}$ DBH Non-Dipt $>45 \mathrm{~cm}$ DBH
5) Cut Dipt $>65 \mathrm{~cm} \mathrm{DBH}$ Non-Dipt $>60 \mathrm{~cm} \mathrm{DBH}$
6) Cut Dipt $>75 \mathrm{~cm}$ DBH Non-Dipt > 70 cm DBH
7) Cut all $>30 \mathrm{~cm} \mathrm{DBH}$ Plantation of Wildlings
8) Virgin, no cutting Control

Block Numbers
Lesong F.R.
$03,17,26,31$
$02,07,13,29$
05,18,21,27
$04,19,30,32$

08,10,24,14
$04,08,18,31$

01,20,25,28
$10,11,20,32$

15,16,22,23
$13,14,15,23$

06,09,11,12
$09,16,17,30$
$S=S i l v i c u l t u r a l$ treatments and plantation establishment in a logged-over forest.

Treatment
Block Numbers
Kledang Saiong F.R. Cherul F.R.
11) Climber Cutting (CL)

02,07,08,15
$01,12,16,20$
12) Girdling + CL (GCL)
$01,12,13,16$
08,11,15,18
13) GCL(+Enrichment Planting) 03,05,09,19

07,10,13,19
14) Cut all $>30 \mathrm{~cm} \mathrm{DBH}$

04,11,14,17
02,03,04,06
Plantation of Wildings
15) Logged-over, no Treatment $06,10,18,20$ Control
16) Enrichment Planting Planted wildings
$03,05,09,19$
07,10,13,19

The plot in Piah Forest Reserve uses the same experimental layout as the ITTO plots. There are 3 replications per treatment (4 treatments of logging in virgin forest + control, no logging):

Treatment
Block Numbers
Piah F.R.

1) Cut all $>30 \mathrm{~cm} \mathrm{DBH}$
$04,10,12$
2) Cut all > 45 cm DBH
$02,03,13$
3) Cut Dipt $>50 \mathrm{~cm}$ DBH

06,08,07
Non-Dipt $>45 \mathrm{~cm} \mathrm{DBH}$
5) Cut Dipt $>65 \mathrm{~cm}$ DBH
$01,09,15$
Non-Dipt $>60 \mathrm{~cm} \mathrm{DBH}$
8) Virgin, no cutting Control

05,11,14

Appendix IV :
The Fieldcards Version Number 2.
1 : The fieldcard for enumerating trees/poles.
2 : The fieldcard for enumerating saplings.
3 : The fieldcard for enumerating seedlings.
4 : The fieldcard for enumerating planted wildlings.

-

$$
\mathrm{L}
$$

IL

colum V.I | 0 |
| :--- |
| 0 |

Plaptation les
Fieldcard \qquad

* : If quad. contain minimum 1 sapl. STK $=1$, if no. sapl. 5 IK $=0$

sembings
Pieldcard
Coluan Les

[^1]Forest Department Headquarters, 1990: "Panduan Penubuhan Petakpetak Sampel Kekal dan Cara-cara Mengisi Borang-borang Bancian untuk Hutan di Balak", Joint Project Between Malaysia - Itto on Forest Management of Natural Forest in Malaysia, PD $10 / 87$ (E), Silviculture Unit, Kuala Lumpur, 34 pp .

Establishment of Study Area in Virgin Forest", Joint Project between Malaysia - ITTO on Forest Management of Natural Forest in Malaysia, PD 10/87 (F) Series No. 1, Management Unit, Kuala Lumpur, 45 pp .

- " - - " , 1993 b: "Procedure for

Establishment of Study Area in Logged-over Forest", Joint Project between Malaysia - ITTO on Forest Management of Natural Forest in Malaysia, PD 10/87 (E) Series No. 2, Silviculture Unit, Kuala Lumpur, 35 pp. + 12 App.

Korsgaard, S., 1992 a: "Manual of Instructions for the Field Enumeration", Forest Inventory and Management Systems as Part of Forest Resources Conservation Programme, UNDP/FAO/MAL/89/001, Field Document no. 2, Forest Dept. HQ., Kuala Lumpur, 56 pp.
, 1992 b: "Manual for Field Data Processing. Computer Programme Instructions / Flowchart for Computer Processing", Forest Inventory and Management Systems as Part of Forest Resources Conservation Programme, UNDP/FAO/MAL/89/001, Technical Notes no. 6.1 / 6.2, Forest Dept. HQ., Kuala Lumpur, $79 \mathrm{pp} / 7 \mathrm{pp}$.
, 1993 a: "Processing of Forest Research Data Suggestion for Enhancement of the Field Enumeration", Joint Project Between Malaysia - ITTO on Forest Management of Natural Forest in Malaysia, PD 10/87 (F), Technical Note no. 2, Kuala Lumpur, 23 pp., inedit.
, 1993 b: "Manual of Instructions for Enumerating the Permanent ITTO Experimental Plots", Joint Project Between Malaysia - ITTO on Forest Management of Natural Forest in Malaysia, PD 10/87 (F), Field Document no. 1, Kuala Lumpur, inedit.
"FOREST MANAGEMENT OF NATURAL FOREST IN MALAYSIA"

PROCESSING OF FOREST RESEARCH DATA
by

Svend Korsgaard
(Consultant)

Management Unit
Forestry Department Headquarters
Kuala Lumpur
APRIL, 1993 (DRAFT)

PROCESSING OF FOREST RESEARCH DATA

PROCEDURE FOR DATA ENTRY
by

Svend Korsgaard
(Consultant.)

Table of Contents

Page :

1. Introduction 1
2. Suggestion for Enhanced Layout 1
3. Description of the New Codes 3
3.1 Quadrat Stocked 3
3.2 Forest Class (FCL) 4
3.2.1 First Code Digit 7
3.2.2 Second Code Digit 8
3.2.3 The Third Code Digit 8
3.3 Consecutive Tree Number 9
3.4 Stem Identity Class (SIC) 10
3.5 Wood Quality Group (WQG) 14
3.5.1 WQG, Group, Division 15
3.6. Diameter Breast Height over bark 15
3.7 Trunk Height 15
3.7.1 Trunk Height, Measured 16
3.7.2 Trunk Height, Estimated 16 16
3.8 Log Grade 16 18
3.9 Crown Form (CF)
3.9 Crown Form (CF) 3.10 Crown Illumination or Dominance (CI) 18
3.11 Impeding Wines and Climbers 19
3.12 Enumeration of Large Palms and Bamboo 20
3.13 Record Closed 21
3.14 Recording Saplings, Seedlings and Wildiings 21 21
4. Discussion 22
5. References 23
Appendix
I. The Fieldcard for Trees
II. The Field Code Descriptions
III. The Speciers List:

1. Introduction.

The present form of the field card and the items to be enumerated (Unit Fengurusan Hutan, 1991 and Unit Silvikultur, undated) may be enhanced to a more efficient field card layout, where the data files, as entered in the computer, can be directly used in the processing.

Some of the items recorded, like the soil and terain characteristics, meed only to be recorded once. Other items, now recorded individually, may be combired in one code. The different ilems scored, for the individual trees in the silvicultural treatnent plote and the logging of virgin forest plots, should be combined so that only one type of field card is used for all plote.

The field card layout and the items to be recorded will be similar to those recorded by the FAO management study (Korsgaard. 1992) as well as the permanent sample plots established by each state (Unit Pengurusan Hutan, 1992).

The original design was developed during an earlief FAO project in Sarawak during the period 1978 to 1981 (Hutchinson, 1982 and Korsgaard. 1982).

Below is a description of each new field card entry and the corresponding entries for the present field card.

2. Suggestion for Enhanced Layout

PROPOSEO NEW FIELD CARD LAYOUT
columa

Written information, not pert of the computer file.
(Columin to s will contain
a file record number)
6. Quadral ctocked or mpty (See below)

7-9 Forest Class (see below)

10-11 Treatment number

12-13 plot mumber

14-16 Quadrat or plant line number

17-19 Tree number/Seedling coumt: Paim/Eamboo count (See Eelow)

PRESENT FTELD CARD

COLUMN

A 1 to 13. date and place

Not recorded

Combination of columns $A 34 \cdots 45$ and additional information not presently recorded.

A 14 Treatment number

A 15-16 Plot number
A $17-18$ Quadrat or plant inne number

6 1-3/B 5-7/B 1-2 Tree number/ Seedling count; wilding plant number.

```
20-22 sten Xdentity class
    (See below)
```

23 Wood Quality Group (See details of groups below)

24-27 Botanicaj code (List to be extended)

28-31 Diameter Breast Height
32-33 Height in Meters (See below)

34 Log grade (See below)

35 Status crop tree
36 Crown form
(See below)
37 Crown illumination (See below)

38 Stem damage
39 Crown damage
40 Woody climbers on tree (See below)

B 17/ 816 Tree Class.

Not recorded.

B 4-7/B 5-8/ B 3-6 Species code

B 18-21/ B 17-18/ B 17-20 Diameter DBHob

B 22 Number of logs/ B 19-21 Sapling height in decimeters/B 21-23 Wildling height in decimeters.

B 23 1st $\log q u a l i t y$.
(S) B 24 status crop tree
(S) B 25 Crown form
(S) B 26 Crown dominance
(L) B 24 Stem damage
(L) B 2 is crown damage

Not recorded

A 19 - 33 Terrain and geology information, need only to be recorded once. It is now kept in a separate file for future processing.

3. Description of the New Codes

3.1 Quadrat Stocked or Empty.

The code "quadrat stocked" provide information as to whether the quadrat contain any tree or pole (alive or dead), palm or bamboo to be enumerated. Alternatively, there is no such tree etc. to be enumerated, i.e. the quadrat is considered empty.

Two code numbers are used: (0, and 1):
YES, tree $\geq 15.0 \mathrm{~cm}=1$:
If the Quadrat is stocked and trees DBHob of 15.0 cm and above are to be measured the code is $=1$. This for Quadrats 1,2 , $3,4,5,6,10,11,15,16,20,21,22,23,24,25$.

YES, trees and poles $\geq 5.0 \mathrm{~cm}=1$:
If the Quadrat is stocked and trees and poles of DBHob of 5.0 cm and above are to be measured the code is $=1$. This is for Quadrats $7,8,9,12,13,14,17,18,19$.
$\mathrm{NO}=0:$

If no tree, pole, palm or bamboo appear to be measured in a Quadrat, the Quadrat is empty and the code is $=0$

If the quadrat is empty, the remaining infomation is recorded like Forest Class (FCL) and identification of the quadrat.

3.2 Forest Class (FCL)

The term Forest Class (FCL) is used to distinguish this classification from the Forest Type used by the inventory. The classification is derived from the system developed by Hutchinson (1982).

In the field, the classifications are made according to the following instructions:

The classification into "Forest Classes" (FCL) is applied to the individual 20 m by 20 m Quadrat. Areas of this size have a high probability of being homogeneous. At least they are small enough for the recorder to see clearly what they contain. The classification is not intended to be applied to larger areas of forest which are varied in composition.

The scoring of $F C L$ is done by looking at the situation within the quadrat, on the ground and in the air directly above the quadrat.

The codes to be used are given in Tables 1 and 2 overleaf.

FOREST CLASS, ECL

Table 1.

FOREST CL_ASS, FCL

Table 2.

Fig. 1. Examples of Forest Classes

Description of the Forest Class (FCL) codes:

3.2.1 First Code Digit:

The first code digit gives a general description of the quadrat.
1 : Mature Forest, Tree $\geq 50 \mathrm{~cm}$ DEH.
There is at least one tree of any species having Stem Identity Class (SIC, see below) of 111 and Loggrade 1 or 2 with a DBH of 50 cm or more inside the quadrat.

2 : Immature Forest, Trees $30 \mathrm{~cm}<50 \mathrm{~cm} \mathrm{DBH}$.
There is at least one tree of any species having SIC 111 and loggrade 1 or 2 with a DBH of between 30 cm and 50 cm inside the quadrat.

3 : Same as 2, except that, within the quadrat among the poles >5 cm DBH , there is a dominance of pioneer species like Macaranga, etc.

For the remaining classes, 4, 5, 6, 7 and 8, the Forest class that occupy 50% or more of the quadrat is to be scored. If there are more than two classes present score the most dominant class.

4 : Regenerating forest, Trees $<30 \mathrm{~cm} \mathrm{DBH}$
The are no trees $>30 \mathrm{~cm}$ of SIC $=111$ and log grade 1 or 2 inside the quadrat. But there are trees of SIC 111 with a diameter between 15 cm and 30 cm DBH. At least 1 tree must be inside the quadrat.

5 : Same as 4, except that within the quadrat among the trees and poles there is a dominance of pioneer species.

6 : Temporary Opening, Few or no trees $>15 \mathrm{~cm}$ DBH
The quadrat is eithex without trees or there are only a few trees $\geq 15 \mathrm{~cm} D E H$. Poles, seedlings or saplings may be present or the conditions of the site is such that regeneration will appear within a few years.

7 : Same as 6, except that within the quadrat there is a dominance of pioneer species of poles, saplings or seedlings.

8 : Same as 6, except that within the quadrat, the open space is created by human activity like logging, logging debris, crowns, shifting cultivation, buming, garden etc. If left undisturbed it will regenerate naturally, f. ex: seedlings through logging debris.
: Unproductive, Long term open space

There may be a few trees $\geq 15 \mathrm{~cm}$ but more than 50% of the quadrat is considered unproductive and will remain unproductive for many years. It may be tractor track, road, landing, stream, pool, swamp, steep slope, rocks, alang-alang, palins, bamboo, rattan, banana, fern, etc. The actual situation is described by the third digit.

3.2.2 Second Code Digit

The second code digit is used to describe the tree crom cover of the quadrat. Only the crowns from living trees 30 cm DBH and larger of any species are considered. The trees may be based both inside and outside the quadrat.

Look into the air above the quadrat and if the crom of txees 230 cm obri cover:
from 0 to 33% of the Quadrat score: \quad Code $=1$
from 33 to 66% of the Quadrat score: Code $=2$
from 66 to 100% of the Quadrat score: Code $=3$

3.2.3 The Third Code Digit

The third code digit is used to describe the ground condition of the Quadrat, roads, etc. and the presence of impeding vegetation like palm. vines, banana, etc.

1 : No impeders, good site
Score only if 75% or more of the ground cover of the guadrat is free of tracks, roads and impeding vegetation and tho site has a good productive capacity. If Wines and cimbers are actually impeding the growth of some trees but the extent is difficult to assess, probably less than 25%, use code 2 .

2 : Vines and Climbers Impeding
Scole if Vines and/or climbers, including rattan, impedes 25% or more of the quadrat. However, if the Vines etc. actively impede the growth of trees inside the quadrat use this code even if the area is less than 25\%.

3 : Palms, Stem/Stemless, Clusters
Score if the fronds of Palms, both single stemmed, stemiess or in clusters, cover more than 25% of the quadrat even if the palms are rooted outside the quadrat.

4 : Bamboo Present
Score if bamboo cover more than 25% of the quadrat even if the bamboo is rooted outside the quadrat.

5 : Bananas, Large Eingers
Score if Bananas and/or large gingers cover more than 25% of the quadrat. Include only the ginger if it actually impede the regeneration of seedlings and saplings.

6 : Ferns, Bracken, Lalang
Score if ferns, bracken or/and Lalang grass cover more than 25% of the quadrat.

7 : Fallen Trees, Crowns, Debris
Score when fallen trees, crowns, debris from either natural causes like windfall or from logging activities, cover more than 25% of the quadrat.

8 : Natural impediment : Water, Swamp, Slope, rock, poor site
Score if more than 25% of the quadrat is naturally unproductive due to stream, stream bed, natural water pool, swamp, steep slope, rocks or a natural poor site without vegetation.

9 : Man made impediment : Track, Road, Landing, pool
Score if more than 25% of the quadrat is unproductive due to the effect of logging activities, present as well as before. These are tractor tracks, skid trails, roads, landings, and impounded water or pools due to road construction and blockage of natural water flow. However logging debris is considered under code 7.

In the case where more than two classes are present, score the class that will have the most long term effect on the development of the forest or the class considered most adverse to the growth of the trees.

It is difficult to give a fixed priority, list. The final scoring will be left to the judgement of the field crew leader.

3.3 Consecutive Tree Number.

The consecutive tree number is recorded as usual for trees and poles. However, for palms and bamboo there is no consecutive individual numbering. Rather the number of clumps or stems by species group is counted and recorded similar to the seedling count. The counted number of stems/clumps/clusters per species group is recorded in these positions of the fieldcard.

3.4 Stem Identity Class (SIC)

It is strongly recommended that all trees or stems are recorded whether they are living or dead, broken, fallen or cut. The information collected is very useful for the overall ecological analysis of the data, particularly when estimating logging damage or damage caused by local felling activities, shifting cultivation, silvicultural treatments etc.

The Stem Identity Class consists of a 3-digit code number constructed in the following manner:

The first digit:
1 : Tree species, Trees, $\mathrm{DBHob}=15.0 \mathrm{~cm}$ or larger.
$1: \quad " \quad$ " Poles, $D B H o b=5.0 \mathrm{~cm}$ up to $>15.0 \mathrm{~cm}$.
4 : Palm species, large palms, total height 3 meters or larger.
4 : Bamboo, total height 3 meters or larger.
The second digit:
1 : Stem living, standing.
2 : Stem living, fallen.
3 : Stem dead, standing.
4 : Stem dead, fallen.
The third digit:
For Trees:
1 : Complete stem with crow.
2 : Broken stem, point of breakage 4.5 meters or higher above the ground.

3 : Broken stump, point of breakage up to 4.5 meters above the ground.
4 : Cut stump, stem cut by human activity; logging, shifting cultivation etc. no height limits up or dom.

5 : Stem ringed, girdled or poison girdled as part of silvicultural treatment.

9 : Not found, stem recorded in previous enumeration, now disappeared without trace.

NOTE : Only consider that part of the stem to which the root is still attached.

Do not consider broken or fallen dead stems that are totally decayed.
Use the classification of broken stem/stump STC $=112$ or 113 when the main crown is broken off and only a few branches and coppice survive. If the breakage is in the crom itself score SIC $=111$ and use Crown Form codes $(C F)=4$ or 5 to describe the damage.

Palms:
The third digit indicate the growth hamit of the palms:
1 : Single stemmed palm.
2 : Palms with a habit of growing in clusters or clumps.
3 : Stemless palms.
NOTE : Some palm species start as being stemless but later develops a stem. Score the actual growth habit as encountered.

Bamboo:

4 : All species of bamboo.

The complete table of stem identity classes can then be constructed, refer to Table 3 below.

Table 3. Table af Stem Identity Classes.

The codes placed in parentheses are "Record to be closed". That is, when a stem reach a SIC code in one of those fields, the stem no longer occupy an important position in the forest. The stem is not to be recorded in future enumerations. Refer to section 3.13.

Fig. 2. Examples of Stem Identity Classes (SIC)

rokoh hidup
Tegat
sempurna denzan sllara

rokek hidup Trgak
Batang patah pada paras

1. 5 m kn atas

rokok hidup Tegnk
batang patoll pada paras C. $3 m-1.5 m$

rokok hidup
Teqak
Tunggul

122

131

132

rokek mati
Tngak
Smpuran dengan silara
poxok mati
T:gak
rokok matil
Trgak
datann
$0.3 m-4$

Foxok mati
rejak
Rowatan silvikuleur difalankan-gelang racun

143

rokok mat!
Tumbeng Tunggui

Fokek matl
Tuntang
Scmpurna dengan silara

Fokok matl
rombang
Datang jutah pada paras 1.Sm ke atas
rokok mint
Tumbang
gatang patah foada paras
0. 3m-4.5m

3.5 Wood Quality Group (WQG)

For most practical purposes it is sufficient to present the results of the analysis in some broad groups depending on the commercial value of the trees.
However, for silvicultural purposes it is important to know which species are becoming dominant when the forest is opened up. This may be both commercial or non-commercial species as well as the light-demanding pioneer species.

The Wood Quality Groups follow the groupings used by the Forest Department.

WQG	Description		
0	:	Dead, unidentified stems.	
1	:	Dipterocarp, Meranti	
2	:	Dipterocarp, Non-Meranti.	
3	:	Non-Dipt. Light Hardwood.	Fully
			Marketable
4	:	Non-Dipt. Medium Hardwood	
5	:	Non-Dipt. Heavy Hardwood	
6	:	Other species, partially marketable.	
7	:	Other species, not presentl	arketable.
8	:	Light-demanding, pioneer sp	es, "weeds".
9	:	Palms/Bamboo.	

The wood quality group is part of the botanical identification and does not indicate the actual commercial status of the tree being enumerated. The log Grade of the tree, which is explained in section 3.8 below, indicate the potential for the tree to yield a commercial log.

3.5.1 WQG, Group, Division.

For a detailed analysis of the data, the actual botanical identification of the trees are given by a five-digit code number. There is one digit available for the Wood Quality and two digits available for each of Group and Division.

The Wood Quality Group (WQG), the Group and the Division Code give a unique identification of each tree to the level of genera.

For the purpose of this investigation, the emphasis is focused on the commercial value of the forest. WQG's "1", "2", "3", "4" and "5" are only assigned to those species generally accepted as fully marketable. Those species of partial marketability and with a low or no market value, are given WQG "6" or "7".

However, the species list used by the Department is not detailed enough for the group: miscellaneous species. The group contains fast growing pioneers as well as slow growing shade tolerant trees. Fior a correct assessment of the ecological development of the forest it is important to have specific information of this large group of species. There is room in the present species list to expand the codes now grouped together under "99.99". The number series from "90.00" to "99.98" is available.

Stems that cannot be identified are given the code "7.99.93".
The Hood Quality code for palms and bamboo is "9".

3.6 Diameter Breast Height over bark (DBHob).

For trees and poles the diameter is measured and recorded as usual.
For palms and bamboo, there is no diameter to record, instead, for purposes of programining convenience, a fixed diameter of 150 mm is inserted into the file for palms and bamboo.

3.7 Trunk Height.

In order to estimate the volume the height is measured on selected trees and estimated on all other trees. Height is only taken on trees with SIC $=111$ and a diameter of 15.0 cm and above. The height is measured as olear bole height from the ground up to the crown point.

The point of the crown is at the point where the trunk divides into branches and where the tree will be cut during normal felling operations. Minor branches may occur below the crom point. Major branches may reduce the Trunk Height if they occur less than 2.5 meters below the obvious crown point.

3.7.1 Trunk Height, measured

The selection of trees where the Trunk Height is to be measured is done as follows:

In the Quadrats where trees with a DBHob of 15.0 cm and above are measured (i.e. quadrats no. $1,2,3,4,5,6,10,11,15,16,20,21,22,23,24$, 25.) the trunk height is measured to the crown point on tree no. 5 or less; with SIC $=111$ and \log grade 1 or 2 . The measurement must be accurate using a good quality instrument.

3.7.2 Trunk Height, estimated

On all other trees and poles with SIC $=111$ and DBHob $\geq 5.0 \mathrm{~cm}$ the trunk height is estimated. This is done using the height of the measured trunks as a guidance and a gauge stick of 2 meters or 6 meters in length against which the trunk height is estimated.

3.8 Log Grade.

The \log Grade is recorded for all living, standing, complete trees and poles $($ SIC $=111) \geq 5 \mathrm{~cm}$ DBHob.

The classification of Log Grade is used to give an indication of the timber production potential of the forest. It is similar to the quality of the first \log presently scored, but takes the whole trunk into account, and does not differentiate between peeler \log and saw \log, as that also depend on species.

Each tree is classified according to mhether it, immediately or in the future, will be able to yield at least one straight, well-formed and sound piece of clear-bole. The log should be acceptable by the industry for conversion into sam timber or veneer, irrespective of the species of the log.

In the future more and more species will be accepted by the log market. The log grade is, therefore, not in any way connected to the botanical identification of the tree.

The classification is made by assessing the status of the tree at the time of recording.

There are five Log Grade Classification:

Code No.

Description

1 : Good Loggrade, no defects.
The bole of the tree is straight and well-formed, without defects, injury or decay from the end of buttress to crom point. The tree may be of commercial size now or will in the future grow to commercial size. Minimum acceptable trunk height is 4 meters, if the trunk has no defects but is shorter than 4 meters use code 2.

2 :

3 : No Log, Stem Deformed
The tree does not contain any section of the bole which is of sawlog quality neither now nor in the future. The reason is that the bole is bend, crooked, fluted, branched, twisted, spiralled or with heavy buttresses. Use this code for trees with a heavy lean $>45^{\circ}$.

4 : No Log, Stem Damaged
Physical injury to the stem has damaged the bole to the extent that no possibilities remain for using the bole as a sawlog, neither now nor in the future.

5 : No Log, Stem Decayed
Due to decay or rot the tree does not contain one sound section of the bole 5 meters long. In the cases where a tree is both deformed and/or damaged and/or decayed, give priority to recording the decay. In cases where heart rot or hollow stems are suspected, but cannot be positively verified from looking at the tree from the outside, disregard the suspicion and record the tree as sound. No boring is to be done.
3.9 Crown Form (CF).

The crown form is recorded for all living, standing, complete trees and poles (SIC $=111$), $\geq 5 \mathrm{~cm}$ DBH.

The crown form is important for the growth of the tree. The distribution of crown forms before and after a logging operation also indicate the amount of damage inflicted on the crown of the remaining trees.
The classification is the same as at present with the addition of coppice crown.

There are five Crown Form classes :
Code No. Description
1 : Complete Circle. Circular, symmetrical and complete or almost complete.

2 : Half Circle. Distinctly asynmetrical or thin, but capable of improvement if room is available or provided by treatment.

3 : Less Than Half Circle. Unsatisfactory, with extensive dieback, strong asymmetry, small but likely to survive.

4 : Only a Few Branches. Suppressed, degenerating or badly damaged, not likely to grow or survive.

5 : Mainly coppice. Main part of crown originating from coppice sprung from broken branches and the trunk after severe damage.

If the crown is broken off but the tree is still alive record the appropriate Stem Identity Class (SIC $=112$ or 113).
3.10 Crow Illumination or Dominance (CI).

The crown illumination or dominance is recorded for all living, standing, complete trees and poles $(S I C=111), 25 \mathrm{~cm}$ DBH.

The crown illumination describes the amount of sunlight received by the crown and is one of the significant factors affecting the growth of the tree. The codes for crown dominance are essentially the same.

When estimating the influence of neighbouring vegetation, disregard dead and broken trees, but do assess the shade given by palms and bamboo.

There are five Crown Illumination/dominance classes :
Code No. Description
1 : Emergent/ Dominant. Full light reaches the sides of the crown at an angle of at least 45 degrees from the vertical.

2 : Eull Overhead Light/ Co-dominant. Upper part of crown fully exposed to overhead light, but sides of crown do not receive full light. Surrounding co-dominant trees of good quality.

3 : same as 2 except surrounding co-dominant trees are mainly of poor quality or maybe palms and bamboo.

4 : Mostly Sidelight or no Direct Light/ Suppressed. The crown receives no vertical light. Part of the crown may receive side light. Overtopped by trees of good quality.
$5:$
same as 4, except surrounding co-dominant trees are mainly of poor quality or maybe palms and bamboo.

3.11 Impeding Vines and Climbers

The impeders are recorded for all living, standing complete trees and poles (SIC $=111$) of DBHob 5 cm or larger.

The purpose of this classification is to assess the way in which impeders such as woody climbers and vines invade the different forest types and to see how logging and silvicultural treatment effect the occurrence of impeders.

The classification is as follows:

Code No.
1 : Impeders not Present.
No Climbers or Vines on the Tree.

2 : Impeders Fresent but not Affecting the Tree.
Climbers and/or vines are present, but they do not hinder or restrict the normal growth and development of the tree and its crown.

3 : Impeders Restricting the Growth.
The normal growth and development of the tree is restricted by impeders growing on the trunk or competing for light in the crown. However, the continued life of the tree is not yet affected.

4
Impeders Seriously Affectind the Growth.
It left unchecked, the impeders are likely to be seriously deforning or even killing the tree. Branches are already dead in the crom or the trunk has already been deformed.

5 : Impeders Recently Cut and Dead.
A few may still be living, but as long as they no longer harm the tree, use this code to indicate a successful treatment by climber cutting.

6 : Impeders Recently Cut but Treatment not Successful.
Remaining climbers whether living or dead, still restrict the growth of the tree.

Note : The effects of the strangler figs, if found, are recorded under this classification.
3.12 Enumeration of Large Palms and Banboo.

The Enumeration of palm species should be included in this study. Measurements for large palms are only to be recorded for living palms; (SIC $=411,412$ or 413):

SIC:
411. - Single stem palns where the top of the fronds reach more than 3 m or more above ground.

412 - Palm cluster or clumps where the top of the fronds reach more than 3 meters above ground.

413 - Stemless palms, where the top of the fronds reach more than 3 meters above ground.

414 - Bamboo, where the top of the leaves reach more than 3 meters above ground

For all palms/bamboo: single stem, cluster, clumps and stemless (palms SIC $=411,412,413$ and bamboo SIC $=414$) record the species namo (vernacular name) count the number of stems for single stem palms or the number of clusters or clumps for other palms and bamboo of the same species and write the number under "consecutive tree number" and vrite " 0150 " in the colums for DBH. Falms and baboo are not to be individually numbered.

3.13 Record Closed.

For permanent sample plots, in order to record in an orderly manner the final entry of a stem, which no longer occupies a position in the stand, the following procedure for "Closing the record" of that stem should be followed.

When a stem, due to a change in stem identity class, enters ane of the bracketed or cross-hatched SIC-classes in the table, the record for that stem is to be closed. That is, enter the stem on the fieldcard in the usual manner writing the DBHob of the latest enumeration. Then, at the bottom of the fieldcard write the consecutive stem number and the year of the enumeration. Following that, no further records will be made of that particular stem in future assessments.

The consecutive stem number of any stem thus entered in "Record closed" should never be used again in that quadrat.

Write the words "Records Closed" in the line for the stem under the stem descriptions. The record is to be closed when the stem enters one of the following SIC classes :
Tree, not found
Tree, dead standing, broken : $119,129,139$
stump or cut stump
Tree, dead fallen, all types : 134
3.14 Recording Saplings, Seedlings and Wildlings.

There are a few enhancements proposed for these stems. For saplings the mixing of diameter and height is confusing.

It would be more consistent if the definition of a sapling was given as having a diameter DBHob from including 20 mm up to 50 mm , and seedlings from 30 cm height up to 20 cm diameter DBHob.

This clarification will also make the output tables consistent, where the sapling population can be added to the pole population.
As far as planted wildings are concerned, their height development is important. It is therefore proposed that the field card layout used for trees and poles be used for the planted wildlings as well, as it is the intention to follow the development of the plants from the seedling stage over saplings to poles and, eventually, mature trees.

Wildlings that were not planted must be given a specific Stem Identity Class to calculate correctly the survival rate among the wildings actually planted. Stem Identity Class 318 is proposed.

SIC 318 : Wildling not planted

4. Discussion.

Although the enhancements suggested above looks like a major chance, the actual difference between the suggestions and the present system are in fact minor. The amendments will, however, facilitate a more detailed analysis of the data and the system of enumeration will be uniform and therefore directly comparable between the different enumerations carried out.

There are presently 11 field cards used in the study, the suggestion will reduce this to ideally 1 field card layout, but for practical reasons 3 formats will be proposed. One for trees and poles, one for saplings and one for seedlings.

It is the experience that the enumeration of seedlings and saplings in small subplots is very difficult, not least to the 'blow-up-factor' of 278 for seedlings and 44 for saplings. One plant missed or wrongly included has a large effect. Furthermore, the representation error is difficult to assess.

It is the suggestion that seedlings and saplings be excluded from this study and a dedicated special study of seedling and sapling development with respect to various ecological factors be carried out separately.

5. REFERENCES

Hutchinson, I.D., 1982: "Field Enumeration of Permanent Sample Plots in the llixed Dipterocarp Forest in Saravak", UNDP/FAO/MAL/76/008; Field Document No. 16, The Eorest Department, Kuching, 136 pp.

Korsgaard, S., 1982: "A Manual for the Computer Programming and Processing of Silvicultural Research Data", UNDP/FAO/MAL/76/008, Field Document No. 6, The Forest Department, Kuching, 124 pp.
" , 1992: "Manual of Instructions for the Field Enumerations" UNDP/FAO/MAL/89/001, Field Document no. 2. Forestry Department H.Q., Kuala Lumpur, 56 pp.

Unit Pengurusan Hutan, 1991: "Panduan Penubuhan petak sampel kekal dan cara-cara menyisi borang bancian untuk hutan asli projek "Forest Management of Natural Forest in Malaysia"", Forestry Department H.Q., Kuala Lumpur, 45 pp.
"
" , 1992: "Fanduan Kerja Luar Penubuhan "Growth Plots" bagi daerah-daerah hutan di Semenanjung Malaysia", Forestry Department H.Q., Kuala Lumpur, 34 pp.

Unit Silvikultur, undated: "Panduan Penubuhan petak sampel kekal dan cara-cara mengisi borang bancian ", Forestry Department H.Q., Kuala Lumpur, 35 pp .

APPENDICES :
I. The Fieldcard for Trees and Poles
II. The Field Code Descriptions
III. The Species List
,

MANUAL OF INSTRUCTIONS FOR ENUMERATING THE PERMANENT ITTO EXPERIMENTAL PLOTS

PROCESSING OF FOREST RESEARCH DATA

MANUAL OF INSTRUCTIONS FOR ENUMERATING

THE PERMANENT ITTO EXPERTMENTAL PLOTS
by
Svend Korsgaard
(Consultant)
Page

1. Introduction 1
2. Design of the Experiments 2
2.1 The Enumeration Quadrat 2
2.2 Identification of the Experiments and the Computer Datafiles 2
2.2.1 Identification of Quadrats and Subplots 3
3. Design of the Fieldcards Version No. 2 4
3.1 The Fieldcard for Recording Trees/Poles in a Quadrat 4
3.2 Details of Fieldcard Entries, Trees/Poles 6
3.3 Quadrat Information 6
3.4 The Forest Class (FCL) 7
3.4.1 Description of the Forest Class (FCL) Codes 10
3.4.2 Sequence of Scoring 13
3.5 Quadrat Identification 13
4. Individual Tree Entries 14
4.1 When to Include Border Trees 14
4.2 Consecutive Tree Number 15
4.3 Tree Identity Class (SIC) 15
4.4 Botanical Identification 19
4.4.1 Vernacular or Local Name 19
4.4.2 Wood Quality Group (WQG) 19
4.4.3 WQG, Group, Division 20
4.5 Diameter at Breast-Height Over Bark 21
4.6 Trunk Height 22
4.6.1 Trunk Height, Measured 23
4.6.2 Trunk Height, Estimated 23
4.7 Log Grade 23
4.8 Crop Tree Status 24
4.9 Crown Form 25
4.10 Crown Illumination / Dominance 27
4.11 Stem Damage 29
4.12 Crown Damage 29
4.13 Impeding Wines and Climbers 30
5. Record Closed 31
6. Recording Poles, Saplings, Seedlings and Wildlings 32
6.1 Definition of Poles 32
6.1.2 Details of the Fieldcard Entries for the Recording of Poles 32
6.2 Definition of Saplings 33
6.2.1 The Sapling Subplot 33
6.2.2 Details of the Fieldcard Entries for the Recording of Saplings 33
6.3 Definition of Seedlings 34
6.3.1 The Seedling Subplot 34
6.3.2 Details of the Fieldcard Entries for the Recording of Seedlings 34
6.4 Recording of Planted Wildlings 35
6.4.1 Details of the Fieldcard Entries for Recording Wildlings 35
7. Sketch-Map of the Quadrat 39
8. Practical Instructions 40
8.1 Crews for the Enumeration Work 40
8.2 Training Course and Supervision 41
8.3 Checking the Recording in the Field 41
8.4 Organizing the work 42
9. Checking the Fieldcard Records 43
9.1 The Fieldcards 43

1. INTRODUCTION

This manual gives the instructions for enumerating the permanent sample plots established by the Joint Malaysia - ITTO project on "Forest Management of Natural Forest in Malaysia".

The establishment and design of the permanent experimental plots are given in two publications by the Forestry Department Headquarters, (1993 a and b). The instructions for the enumerations up till 1993 using the first version of the fieldcard are similarly given in two papers by the Department (Forestry Department Headquarters, 1990 and 1991).

It has been agreed by the Technical Working Group for the ITrO project to enhance the system of enumeration and to adopt a new version for the fieldcard (Korsgaard, 1993).

The study, to which this manual of instructions refers, is made in order to establish guidelines for forest management and silvicultural activities. Since the logging operation is part of forest management, the study includes areas harvested by various intensities of felling and areas previously harvested and then silviculturally treated. For further details of the establishment procedure, please refer to the two papers by the Forestry Department Headquarters mentioned above.

The enumerations follow similar procedures previously established to study the Mixed Dipterocarp Forest in Malaysia (UNDP/FAO/MAL/76/008 "Forest Development Project, Sarawak", Field Document No. 16, Hutchinson, 1982, and UNDP/FAO/MAL/89/001 "Forest Inventory and Management Systems as part of Forest Resources Conservation Programme", Field Document No. 2, Korsgaard, 1992).

2. DESIGN OF THE EXPERIMENTS

The experimental layout is that of a stratified random block design of 32 blocks for experimental logging in virgin forest and 20 blocks for the silvicultural treatment of logged-over forest. Inside each block the actual permanent sample plot consists of a square 100 meters by 100 meters in size making 1 hectare. The 1 ha. sample is located inside the main block such as not to be obstructed by streams or main logging roads.

2.1 The Enumeration Quadrat

The basic unit of enumeration is a square, 20 meters by 20 meters, called a Quadrat.

Quadrats are marked on the ground by permanent plastic tubes. Corrections are made for slope.

Note: All posts and stakes must be cut outside the Quadrats and outside the sample plot. Disturbance of the Quadrat should be as little as possible, no line clearing, no cutting, no breaking, no trampling etc. This is particularly important for the sapling and seedling subplots.

2.2 Identification of the Experiments and the Computer Datafiles.

In order to uniquely identify each Experiment and the Treatments applied, the following system is used:

Each forest locality is given a five-character code consisting of two letters, the letters refer to the main experimental area.
'Logging in Virgin Forest' :
"SL" : Sungei Lalang Forest Reserve, Selangor.
"LE" : Lesong Forest Reserve, Pahang.
"PI" : Piah Forest Reserve, Perak. (Not an ITTO experiment).
'Silvicultural Treatment of Logged-over Forest' :
"CH" : Cherul Forest Reserve, Terengganu.
"KS" : Kledang Saiong Forest Reserve, Perak
Each treatment is given an individual number:
'Logging in Virgin Forest' :
01 : CUT ALL > = 30 CM
02 : CUT ALU > $=45 \mathrm{CM}$
03 : CUT DIPT $>=35 /$ NON-DIP. $>=30 \mathrm{CM}$
04 : CUT DIPT $>=50 /$ NON-DIP. $>=45 \mathrm{CM}$
05 : CUT DIPT $>=65 /$ NON-DIP. $>=60 \mathrm{CM}$
06 : CUT DIPT>=75/ NON-DIP. $>=70 \mathrm{CM}$
07 : CUT ALL> $=30$ CM/PLANT WILDLING
08 : NO LOGGING, VIRGIN CONTROL,
'Silvicultural Treatment of Logged-over Forest' :
11 : CLIMBER CUTTING
12 : GIRDLING + CLIMBER CUTTING (GCL)
13 : GCL (+ ENRICHMENT PLANTING)
14 : CUT ALL>=30 CM/PLANT WILDLING
15 : CONTROL, LOGGED, NOT TREATED
16 : ENRICHMENT PLANTING
NOTE : The code numbers for 'Silvicultural treatment of logged-over forest' are different to those given in previous papers in order to make them unique.

The computer filename is constructed by the experimental area code, the letters 'TMT' (for treatment), the treatment code numbers, a dot ('.') and the year of enumeration and a number giving the size of the trees enumerated :

1 : Trees/poles enumerated in the whole quadrat.
2 : Saplings enumerated in a 5 meters by 5 meters subplot.
3 : Seedlings enumerated in a 2 meters by 2 meters subplot.
4 : Wildlings planted as plantation or as enrichment.
A complete unique filename is thus constructed : SLTMT02.921= Sungei Lalang, Treatment no. 2, enumerated in 1992 containing trees/poles enumerated in the whole quadrat.

2.2.1 Identification of Quadrats and Subplots.

Within the 1 ha. sample plots, the Quadrats are numbered consecutively from 1 to 25 . The tags on the posts are marked accordingly.

In the outer 16 quadrats (Nos $1,2,3,4,5,6,10,11,15,16,20,21$, $22,23,24,25$) all trees having a diameter at breast height over bark (DBHob) of 15 cm or more are individually numbered, tagged and enumerated. In the central 9 quadrats (Nos $7,8,9,12,13,14,17,18,19$) all trees and poles having a DBHob of 5 cm and more are individually numbered, tagged and enumerated.

The 5 by 5 meter sapling subplots are placed at the comer of each of the 9 central quadrats and are numbered $26,27,28,29,30,31,32$, 33,34. All saplings being 1.5 meter high up to 5 cm DBHob are individually numbered, tagged and enumerated.

The 2 by 2 meter seedling subplots are placed at the corner of each of the 9 central quadrats inside the 5 by 5 meter sapling subplot and are numbered $35,36,37,38,39,40,41,42,43$. All seedlings from 15 cm to 150 cm total height are counted species by species.

The wildlings in the plantation plot and in the enrichment planting are planted in lines. For plantation there are 17 lines and for enrichment planting there are 10 lines per sample plot. There are 33 planting positions per line. The lines and positions are individually numbered.
3. DESIGN OF THE FIELDCARDS VERSION NO. 2.

There are four types of fieldcards (Refer to Appendix No. I) (DBHob: Diameter at Breast Height (1.3 m) over bark) :-

E-1. The fieldcard for recording the data from trees and poles, covering the whole Quadrat. (Trees $\geq 15.0 \mathrm{~cm}$, Poles $\geq 5.0 \mathrm{~cm}$ DBHob).

E - 2. The fieldcard for recording the data from saplings in the 5 by 5 meter subplot. (150 cm in total height to $<5.0 \mathrm{~cm} \mathrm{DBHob}$).

E - 3. The fieldcard for recording the data from seedlings in the 2 by 2 meter subplot. (From 15 cm to 150 cm total height).

E-4. The fieldcard for recording wildlings planted in lines.

3.1 The Fieldcard for Recording Trees/Poles in a Quadrat

There is one separate fieldcard to be used for each Quadrat. Under no circumstances must data from another quadrat be recorded on the same fieldcard. Even if there are no trees to enumerate, there must be an individual fieldcard indicating the presence of the Quadrat. For practical purposes such a Quadrat is termed an "empty" Quadrat.

The fieldcard is divided into four parts. (Refer to Appendix No. I).
(a) Text Information:- (MUST be written on each and every fieldcard

- Location, Forest Reserve and compartment.
- Name of the officer making the recordings.
- The exact date of the recordings in the forest.
- Any observations in the quadrat like: road, stream, landing traces of encroachment, cultivation, wildlife, logging etc.

It is important that the name of the fieldcard recorder is written on each fieldcard together with the exact date of the recording.
(b) Forest Locality (Filename):-

A,B - Information identifying the experimental area.
C - The type of treatment applied (See codes in section 2.2).
D - The year of this enumeration.
This information applies to every batch of fieldcards and the coded information is used when identifying the files during computer processing.
(c) Quadrat Information:-
(1-5) - (Will contain a consecutive record number to be inserted during computer data editing).

6 - Stocking of Quadrat (STK).
7-9 - Forest class of Quadrat (FCL).
10-11 - Treatment code (same as for Locality information, refer to section 2.2).

12,13 - Block number.
14,16 - Quadrat number.
(d) Tree Information:-

The lines on the Fieldcard are used to record the individual information for trees to be enumerated. There is one line or record per tree. In order for the fieldcrews to check the recording while in the field, key information from the previous enumeration is transferred to this years fieldcard :

- Previous enumeration (Give year / month)
(17-19) - Consecutive Tree Number (CTN).
(20-22) - Tree Identity Class (SIC).
(- Wood Quality Group (WQG).)
(25-27) (- Botanical code.)
(28-31) - Diameter at Breast-Height over bark (DBHob).
- Vernacular name or local name. (Written in full)
- Current enumeration (Give year / month)

17-19 - Consecutive Tree Number (CTN).
20-22 - Tree Identity Class (SIC).

- Vernacular name or local name. (Transferred in full)

23 - Wood Quality Group (WQG) from 'SPECIES.IIS'
24-27 - Botanical code. 4 digits from 'SPECIES.IIS'
28-31 - Diameter at Breast-Height over bark (DBHob), in mm.
32-33 - Trunk height to Crown Point in meters.
34 - Log Grade (LG).

```
35 - Crop Tree Status
36 - Crown Form (CF).
37 - Crown Illumination / Dominance (CI).
38 - Stem Damage.
39 - Crown Damage.
40 - Impeding Climbers and Wines (CL).
```


3.2 Details of Fieldcard Entries, Trees/Poles

The following sections give a brief description of the individual items to be recorded on the fieldcard for trees 15.0 cm DBHob or larger and poles 5.0 cm DBHob and larger.

The observations made in the field are converted to code numbers on the fieldcard. The code numbers to be used are given in the sections below. The species list SPECIES.LIS for the botanical codes is given in Appendix No. II.
a) Locality Information, Computer file Identification.

The codes identifying the experimental area, the treatments applied and the year of enumeration are described in section 2.2 above.

The code "1", printed on the form, indicate that the fieldcard is used only for trees/poles with a diameter at breast-height over bark DBHob of $15.0 / 5.0 \mathrm{~cm}$ or more.

Note : The complete code is to be written on each and every fieldcard.
The code is used as the computer file identification or the "Filename" = "SLTMT03.921". The code is not part of the individual record. Each computer file will have its own unique Filename.

3.3 Quadrat Information

The quadrat information gives a broad description of the type of forest found inside the Quadrat, the Forest Class (FCL) and give a unique identification of each individual quadrat.

Other relevant information such as soil characteristics and slope of terrain, drainage etc. was enumerated on fieldcard version no. 1 and is kept in a separate computer file for each individual block. The filename is identified by the last character that is a 'Q', example : 'SLBLK01.92Q'.

The small numerals on the fieldcard (6, 7, 10, etc) are used during data entry for computer processing. The numbers
specify the column in the data file. The first five positions are used for a record number that is automatically generated during data processing. (Program ITLINO)

- Quadrat Stocked : 6

The code "quadrat stocked" provides information as to whether the quadrat contains any tree or pole to be measured. Two code numbers are used: (0 and 1):

YES, tree $\geq 15.0 \mathrm{~cm}=1$.
YES, trees and poles $\geq 5.0 \mathrm{~cm}=1$.
If the Quadrat is stocked and trees / poles of DBHob of 15.0 or 5.0 cm and above are to be measured the code is $=1$.

Refer to section 2.2.1 for a list of the quadrat where only trees are to be enumerated and the quadrats where both poles and trees are to be enumerated.
$\mathrm{NO}=0:$
If no trees or poles appear to be measured in a Quadrat, the Quadrat is empty and the code is $=0$

If the quadrat is empty, record the remaining information and identification of the Quadrat. Write "EMPTY" in the first line of the Individual Line Entries and continue with the next Quadrat on a new fieldcard.
3.4 The Forest Class (FCL) : 7,8,9

The term Forest Class (FCL) is used to distinguish this classification from the Forest Type used by the inventory. The classification is inspired by the descriptions given in Hutchinson (1982).

In the field, the classifications are made according to the following instructions:

The classification into "Forest Classes" (FCL) is applied to the individual 20 m by 20 m Quadrat. Areas of this size have a high probability of being homogeneous. At least they are small enough for the recorder to see clearly what they contain. The classification is not intended to be applied to larger areas of forest which are varied in composition.

The scoring of $F C L$ is done by looking at the situation within the quadrat, on the ground and in the air directly above the quadrat.

The codes to be used are given in Tables 1 and 2. Figure 3 gives some examples of different forest classes.

FOREST CI_ASS, FCL

	Over Head Crow Cover of trees> 30 cm DBH from inside or outside Quadrat First and Second Code Digit		
	$\begin{gathered} 0-33 \% \\ \text { X1X } \\ \text { Full sun } \\ \text { light } \end{gathered}$	$\begin{gathered} 33-66 \% \\ \text { X2X } \\ \text { Part } \\ \text { shaded } \end{gathered}$	$\begin{gathered} 66-100 \% \\ \text { X3X } \\ \text { Complete } \\ \text { shade } \end{gathered}$
Mature Forest Tree $>50 \mathrm{~cm} \mathrm{DBH} \mathrm{SIC}=111,$, and Log Grade 1 or 2	11X	12X	13X
```Immature Forest 2XX Trees 30 cm <50 CM DBH, SIC = 111, and Log Grade 1 or 2```	21X	22X	23X
```Immature Forest 3XX Trees 30 cm < 50 cm DBH, SIC = 111, at Log Grade 1 or 2 Dominance of Pioneer spp.```	31X	32X	33X
```Regenerating Forest 4XX Trees < 30 cm DBH, SIC = 111, and Log Grade 1 or 2```	41X	42X	43X
```Regenerating Forest 5XX Trees <30 cm DBH, SIC = 111, and Log Grade 1 or 2 Dominance of Pioneer spp.```	51X	52X	53X
	61X	62X	63X
	71X	72X	738
Temporary Opening due to human activity, cultivation, and burning	81X	82X	83X
Unproductive long term open 9xx space, natural or man-made	91X	92X	93X

Table 1.

FOREST CLASS, ECL

Third Code Digit	\% of Area Covered	Code
No Impeders, good site	$>75 \%$	$\mathrm{XX1}$
Vines and Climbers are impeding	$>25 \%$	XX 2
Palms, stem/stemless, clusters, all species	$>25 \%$	XX 3
Bamboo present	$>25 \%$	XX 4
Bananas, large Gingers	$>25 \%$	$\mathrm{XX5}$
Ferns, Bracken, Lalang	$>25 \%$	XX 6
Fallen trees, crowns, debris, burning	$>25 \%$	XX 7
Water, Swamp, slope, rock, poor site	$>25 \%$	XX 8
Track, Road, Landing, pool	$>25 \%$	XX 9

Table 2.

Quadrat 1	FCL	:	221	:	Imnature forest, 66% - 35% crown cover. No Impeders, good site.
Quadrat 2	FCL	:	919	:	Unproductive, long term open space, $33-0 \%$ crown cover, Track, Road, Landing.
Quadrat 3	FCL	:	715	:	Temporary Opening, Dominance of Pioneer spp., $33-0 \%$ Crown cover, Bananas, Larger gingers.
Quadrat 4	FCL	:	513	:	Regenerating Forest, Dominance of Pioneer spp., $33-0 \%$ crown cover, Bertam Palms.
Quadrat 5	FCL	:	131	:	Mature Forest, $100-66 \%$ Crown cover, No impeders, good site.

Figure 3. Examples of Forest Classes
3.4.1 Description of the Forest Class (FCL) Codes:

- First Code Digit : 7

The first code digit gives a general description of the quadrat.
1 : Mature Forest, Tree $\geq 50 \mathrm{~cm}$ DBH.
There is at least one tree of any species having Tree Identity Class 111 and Loggrade 1 or 2 with a DBH of 50 cm or more inside the quadrat.

2 : Immature Forest, Trees $30 \mathrm{~cm}<50 \mathrm{~cm}$ DBH.
There is at least one tree of any species having SIC 111 and loggrade 1 or 2 with a DBH of between 30 cm and 50 cm inside the quadrat.

3 : Same as 2, except that within the quadrat among the trees >15 cm DBH there is a dominance of pioneer species like Macaranga, etc.

For the remaining classes, 4, 5, 6, 7 and 8, the Forest class that occupy 50% or more of the quadrat is to be scored. If there are more than two classes present score the most dominant class.

4 : Regenerating Forest, Trees $<30 \mathrm{~cm} \mathrm{DBH}$
The are no trees $>30 \mathrm{~cm}$ of SIC $=111$ and \log grade 1 or 2 inside the quadrat. But the quadrat is influenced by crowns of trees SIC 111 with a diameter between 15 cm and 30 cm DBH. At least 1 such tree must be inside the quadrat.

5 : Same as 4, except that within the quadrat among the trees, poles and saplings there is a dominance of pioneer species.

6 : Temporary Opening, Few or no Trees > 15 cm DBH
The quadrat is either without trees or there are only a few trees $\geq 15 \mathrm{~cm}$ DBH. Poles, seedlings or saplings may be present or the conditions of the site is such that regeneration will appear within a few years.

7 : Same as 6, except that within the quadrat there is a dominance of pioneer species of poles, saplings or seedlings.

8 : Same as 6, except that within the quadrat, the open space is created by human activity like logging, logging debris, felled crowns, shifting cultivation, garden etc. If left undisturbed it will regenerate naturally, f. ex. by seedlings growing through logging debris.

9 : Unproductive, Long Term Open Space

> There may be a few trees $\geq 15 \mathrm{~cm}$ but more than 50% of the quadrat is considered unproductive and will remain unproductive for many years. It may be tractor track, road, landing, stream, pool, swamp, steep slope, rocks, alang-alang, palms, bamboo, rattan, banana, fern, etc. The actual situation is described by the third digit.

- Second Code Digit : 8

The second code digit is used to describe the tree crown cover of the quadrat. Only the crowns from living trees 30 cm DBH and larger of any species are considered. The trees may be based both inside and outside the quadrat.

Look into the air above the quadrat and if the crown of trees $\geq 30 \mathrm{~cm}$ DBH cover:

0 to 33%	Code $=1$
33 to 66%	Code $=2$
66 to 100%	Code $=3$

- The Third Code Digit : 9

The third code digit is used to describe the ground condition of the quadrat, roads, etc. and the presence of impeding vegetation like palm, wines, banana, etc.

1 : No Impeders, Good Site
Score only if 75% or more of the ground cover of the quadrat is free of tracks, roads and impeding vegetation and the site has a good productive capacity. If Wines and climbers are actually impeding the growth of some trees but the extent is difficult to assess, probably less than 25%, use code 2.

2 : Wines and Climbers Impeding
Score if wines and/or climbers, including rattan, impedes 25\% or more of the quadrat. However, if the Vines etc. actively impede the growth of trees inside the quadrat use this code even if the area is less than 25%.

3 : Palms, Stem/Stemless, Clusters
Score if the fronds of palms, both single stemmed, stemless or in clusters, cover more than 25% of the quadrat even if the palims are rooted outside the quadrat.

4 : Bamboo Present
Score if bamboo cover more than 25% of the quadrat even if the bamboo is rooted outside the quadrat.

5 : Bananas, Large Gingers
Score if bananas and/or large gingers cover more than 25% of the quadrat. Score large ginger only if they actually impede the regeneration of seedlings and saplings.

6 : Ferns, Bracken, Lalang
Score if ferns, bracken or/and Lalang grass cover more than 25% of the quadrat.

7 : Fallen Trees, Crowns, Debris
Score when fallen trees, crown or debris from either natural causes like windfall or from logging activities, cover more than 25% of the quadrat.

8 : Water, Swamp, Slope, Rock, Poor Site
Score if more than 25% of the quadrat is naturally unproductive due to stream, stream bed, natural water pool, swamp, steep slope, rocks or a natural poor site without vegetation.

9 : Track, Road, Landing, Pool
Score if more than 25% of the quadrat is unproductive due to the effect of logging activities, present as well as before. These are tractor tracks, skid trails, roads, landings, and impounded water or pools due to road construction and blockage of natural water flow. Note, however, that logging debris is considered under code 7 .

In cases where more than two classes are present, score the class that will have the most long term effect on the development of the forest or the class considered most adverse to the growth of the trees.

If in doubt look outside the quadrat and select the class most abundant in the vicinity.

It is difficult to give a fixed priority list. The final scoring will be left to the judgement of the field crew leader.

Rattans are not recorded except if they actually impede the growth of trees and regeneration of seedlings and saplings.

3.4.2 Sequence of Scoring

The scoring is done digit by digit. First look for trees SIC=111, loggrade 1 or 2, DBHob $\geq 30 \mathrm{~cm}$ inside the quadrat. If at least one such tree is found the first digit is 1,2 or 3 , according to the instruction.

If no such tree is found the first digit is either 4, 5, 6, 7, 8 or 9, according to the instructions.

However, code no. 9, unproductive, long term open space is to be used if more than 50% of the quadrat falls in this category even if there are a few trees $\geq 30 \mathrm{~cm}$ present.

Secondly, look into the air above the quadrat and score the crown cover of the quadrat from living trees $\geq 30 \mathrm{~cm}$ DBH.

Finally, look at the ground and the space inside the quadrat and score the third digit.

Burned soil is only scored using the first code digit $=8$, the land may actually be productive, i.e third digit $=1$, if left to recover.

3.5 Quadrat Identification

Treatment Number : 10,11
The treatment number, as part of the quadrat identification, is the same number as appears as part of the filename, since each treatment is kept in separate computer files. The treatment code numbers are given in section 2.2 above.

Block Number : 12,13
In the experiments, there are different types of treatments, the block number refers to a block having received the same treatment The blocks are one hectare square in size. There are four blocks or replications per treatment, except for the Forestry Departments experiment in Piah Forest Reserve where there are three blocks per treatment.

Quadrat no. : 14,15,16
Each Quadrat is given an individual number, and there must be at least one fieldcard per Quadrat. Each Quadrat is 20 m by 20 meters in size and there are 25 Quadrats per block. The Quadrats are numbered consecutively from 001 to 025.

The quadrat Identification must always be recorded on each and every fieldcard.

4 INDIVIDUAL TREE ENTRIES

This section describes the information to be collected with regard to the trees inside the Quadrat.
4.1 When to include Border Trees.

Because the Quadrats are laid out in a consecutive manner, a tree is to be included in the Quadrat if half or more of its base is inside the Quadrat, see Figure 4 below.

Note : The point of measurement has no consequence, it is only the position of the base of the tree at ground level that counts.

Paint an arrow on the tree towards the Quadrat where the tree is recorded.

Tree no. 2 belongs to Quadrat no. 06 . Tree no. 5 belongs to Quadrat no. 07.

Figure 4. Illustration of trees on a Quadrat border

Whenever records for a Quadrat also requires the use of a second fieldcard, write "CONTINUED" on the last line of the first fieldcard and on the first line of the second fieldcard.

On the line below the last entry for the Quadrat write "END".
If there are no items to record in the Quadrat, i.e. the stocking code is "O", write "EMPTY" on the first line of the fieldcard.

4.2 Consecutive Tree Number : $17,18,19$

Each individual tree, whether living or dead, complete or broken, is assigned a unique number that is written on the tag on the tree. Cut stumps are also numbered.

The consecutive tree number is part of the record for the tree and is only used to identify that particular tree.

In the permanent experimental plots, when the tree is no longer to be enumerated and the record for that tree is closed, the number must never be used again. (For "Record Closed" refer to section 5). The number and tag must be regarded as an 'Identity Card' for that tree alive as well as dead.

When new recruits enter the Quadrat, i.e. when a sapling eventually grows to the size of a tree or pole of 15.0 cm or 5.0 cm DBHob or larger, then the new tree is assigned its own number which must be unique and never before used in the quadrat. In the case of new recruits originating from tagged and enumerated saplings in subplots (see section 6.2), the sapling number beginning with the letter ' A ' is discarded and the 'successful sapling' assigned a new number in the series of tree numbers.

Numbers are both painted and tagged to each tree in a conspicuous and lasting manner in order to facilitate the reassessments. Be sure that the string used to tie the tag is loose enough to allow the tree to grow freely. This is particularly important for the poles and saplings.

Note: Never change a consecutive Tree Number. Never change the quadrat in which the tree was initially recorded. Bven if it is found at a later enumeration that the tree was recorded in the wrong ouadrat, the error is negligible compared to the trouble caused by changing all the previous records.
4.3 Tree Identity Class (SIC) : 20,21,22

All trees are recorded whether they are living or dead, broken, fallen or cut.

The information collected is very useful for the analysis of the data, particularly when estimating logging damage or the damage caused by silvicultural treatments or by natural events.

The Tree Identity Class consists of a 3-digit code number constructed in the following manner:

- The first digit : 20

1 : Tree species, Trees, $D B H o b=15.0 \mathrm{~cm}$ or larger.
$1: \quad " \quad$ " Poles, DBHols $=5.0 \mathrm{~cm}$ up to $>15.0 \mathrm{~cm}$.

- The second digit : 21

1 : Tree living, standing.
2 : Tree living, fallen.

3 : Tree dead, standing.
4 : Tree dead, fallen.

- The third digit : 22

1 : Complete tree with crown.
2 : Broken tree, point of breakage 4.5 meters or higher above the ground.

3 : Broken stump, point of breakage up to 4.5 meters above the ground.

4 : Cut stump, tree cut by human activity, logging, shifting cultivation etc. no height limits up or down.

5 : Tree ringed, girdled or poison girdled as part of silvicultural treatment.

9 : Not found, tree recorded in previous enumeration, now disappeared without trace.

NOTE : Only consider that part of the tree to which the root is still attached.

Do not consider broken or fallen dead trees that are totally decayed.

Use Classification of Broken Tree/Stump SIC $=112$ or 113 only when main crown is broken of and only few branches or coppice survive.

If the breakage is in the crown itself score $\operatorname{SIC}=111$ and use crown forms $(C F)=4,5$ or 6

The complete table of tree identity classes can then be constructed, refer to Table 5 below.

	XX1	XX2	XX3	XX4	2X5	XX9
	Compl. Tree	Broken Tree	Broken Stump	Cut Stump	Girdl Tree	Not Found
a) TREE SPECIES, LIVING TREES Standing Fallen	$\begin{aligned} & 111 \\ & 121 \end{aligned}$	$\begin{aligned} & 112 \\ & 122 \end{aligned}$	$\begin{aligned} & 113 \\ & 123 \end{aligned}$	$\begin{aligned} & 114 \\ & 124 \end{aligned}$	115 125	$\begin{aligned} & (119) \\ & (129) \end{aligned}$
b) TREE SPECIES, DEAD TREES Standing Fallen	131 (141)	132 (142)	$\begin{aligned} & (133) \\ & (143) \end{aligned}$	(134) (144)	135 (145)	(139)

Table 5. Table of Tree Identity Classes

The codes placed in parentheses are "Record to be closed". That is, when a tree reach a SIC code in one of those fields, the tree no longer occupy an important position on the forest. The tree is not to be recorded in future enumerations. Refer to section 5. 'Record Closed'.

Be careful to ascertain whether leafless trees are alive or dead.
When making the description, always stand at a distance from the tree and look at the tree from all sides.

Record as a fallen tree a tree leaning against other trees but that would fall to the ground if the other trees were removed.

Figure 6. Examples of Tree Identities.

gut stuht
I.IVING: FAI.I.F.N

FAIITFN GOMIT,PTF.

FAIITFN BROKFN

144 citt STIME
Palmi l.ivinc.

4.4 Botanical Identification

The botanical identification is the most important item on the fieldcard - and the most difficult.

The largest single source of error when comparing two subsequent enumerations of the same plot is the botanical identification. (Korsgaard, 1982 and Mohd. Idris, 1991).

The SPECIES.LIS is given in Appendix II.
The identification provides four items to be recorded:
(i) During the field works:

- Vernacular or local name.
(ii) When in the camp:
- Wood Quality Group (WQG).
- Group.
- Division.

Note: Check the vernacular name and the correct conversion to the botanical codes before sending the fieldcards for data entry. See section 9.5 .

4.4.1 Vernacular or Local Name

This is the only item to record in the field. Refer to the SPECIES.LIS in Appendix No. II.

Use only standard and accepted local names. In cases where a local name is not known, write the scientific name, even if only the family can be identified, and collect leaf specimen.

In cases where the tree cannot be identified write : Unidentified. Be sure to collect flower or leaf specimens for later identification in the herbarium.

The vernacular name should be double checked in the field by the fieldcard recorder and the tree identifier. The correct spelling of the name on the fieldcard should also be checked. Please use only the names given in the species list.

The conversion of the vernacular name to the five- digit botanical code number is most efficiently done at the camp rather than in the field. Be sure to use the correct latest edition of the species list. Destroy all previous editions of the species list whenever an updated species list is provided.

4.4.2 Wood Quality Group (WQG) : 23

For most practical purposes, it is sufficient to present the results of the analysis in some broad groups depending on the commercial value of the trees. However, for silvicultural purposes it is important to know which species are becoming dominant when the
forest is opened up. This may be both commercial or non-commercial species as well as the light-demanding pioneer species.

The Wood Quality Groups follow the groupings used by the Forest Department.

WQG

Description
0 : Dead, unidentified stems.
1 : Dipterocarp, Meranti
2 - Dipterocarp Non-Meranti)
3)

3 : Non-Dipt. Light Hardwood.)
Fully
Marketable
4 : Non-Dipt. Medium Hardwood)
Non-Dipt. Heavy Hardwood
6 : Other species, partially marketable.
7 : Other species, not presently marketable / un-identified.
8 : Light-demanding, pioneer species, "weeds".
9 : Palms / Bamboo.
The wood quality group is part of the botanical identification and does not indicate the actual commercial status of the tree being enumerated. The Log Grade of the tree, which is explained in section 4.7 below, indicate the potential for the tree to yield a commercial log.
4.4.3.WQG, Group, Division : $24,25,26,27$

For a detailed analysis of the data, the actual botanical identification of the trees are given by a five-digit code number. There is one digit available for the Wood Quality and two digits available for each of Group and Division. The Wood Quality Group (WQG), the Group and the Division Code give a unique identification of each tree to the level of genera.

For the purpose of this investigation the emphases is focused on the commercial value of the forest. WQG's "1", "2", "3", "4" and "5" are only assigned to those species generally accepted as fully marketable. Those species of partial marketability and those with a low or no market value, are given WQG "6" or "7" respectively.

The species codes are based on the vernacular names and the Forestry Departments system of Family, Genera, Species. For this study identification to the level of genera is considered sufficient.

Dead stems that cannot be identified are given the code number "0.00.00".

All other trees retain their botanical identity as long as they are recorded, even after they die. Stems that cannot be identified are given the code "7.00.00".

When new species are found, that are not included in the species list, collect leaf specimen and make a note on the fieldcard. The proper code numbers will be decided later in the office, based on the identification in the herbarium.

4.5 Diameter at Breast-Height Over Bark : 28,29,30,31

The diameter at breast-height over bark (DBHob) is defined as the diameter measured by a diameter tape (Steel tape) directly on the fixed bark of the stem at a point 1.3 meter above ground level. On a slope the point is measure on the uphill side of the stem. All readings are recorded to the nearest millimeter. For example, readings that fall between 151 mm and 152 mm are recorded as 151 mm .

Trees having a DHBob of less than 150 mm (or 50 mm in the 9 central Quadrats where poles are sampled) are excluded. All other trees must be measured. Broken stumps and cut stumps with a total height of less than 1.3 meters are measured at the highest possible point. At the point of measurement, the stem is cleaned of wines, thorns, moss, loose flakes of bark and surface vegetation. However, be careful not to wound the tree.

If the tree is deformed at the point of measurement, move the point to a place above the deformity, swelling, bump or forked branch to the nearest approximation of what the diameter at breast height would be. In the case of buttressed stems, make the point of measurement 30 cm above the end of the buttress.

Note : It may be required to use a small lightweight ladder or a special instrument in order to measure the diameter above buttresses accurately.
(Refer to Fig. 7 for examples of the point of measurement).
Diameter estimations should be avoided.
In the permanent experimental plots, where the plots are remeasured periodically in order to calculate the growth, it is of particular importance to make accurate measurements.

The point of measurement must be marked clearly as a "T" mark by using a good quality paint that will last at least five years. Important: Do not alter the point of measurement of any stem. However, if forced by circumstances to change the point of measurement, make a clear note on the fieldcard as to why the change was unavoidable.

It is important to use the outmost care when recording the diameter. The measurements should be carefully checked and repeated loudly by the crew leader/fieldcard recorder.

B. deformed butts

C. FORKED TREES

Figure 7 : The Measurement of Diameter at Breast-Height

4.6 Trunk Height : 32,33

In order to estimate the volume the height is measured on selected trees and estimated on all other trees. Height is only taken on trees with SIC $=111$ and a diameter of 15.0 cm and above. The height is commercial trunk height from the ground up to the first large branch.

The point of height measurement is at the point where the trunk divides into branches and where the tree will be cut during normal felling operations. Minor branches may occur below the crown point. Major branches may reduce the Trunk Height if they occur less than 2.5 meters below the obvious crown point. Do not consider minor defects when measuring the height. Defects are scored under Log Grade, section 4.7 .

4.6.1 Trunk Height, Measured

The selection of trees where the Trunk Height is to be measured is done as follows:

In each Quadrat one tree is selected for accurate height measurement. The trunk height is measured to the crom point on the largest tree with SIC $=111$ and \log grade 1 or 2 where the crown point can be clearly defined. The measurement must be accurate using a good quality instrument such as the Haga or Clinometer.

4.6.2 Trunk Height, Estimated

On all other trees with $S I C=111$ and $D B H o b \geq 15.0 \mathrm{~cm}$ the trunk height is estimated. This is done using the measured tree as a guide and a gauge stick of 2 meters or 6 meters in length against which the other trunk heights are estimated.
4.7 Log Grade : 34

The \log Grade is recorded for all living, standing, complete trees $(S I C=111) \geq 15 \mathrm{~cm}$ DBH.

The classification of Log Grade is used to give an indication of the timber production potential of the forest.

Each tree is classified according to whether it, immediately or in the future, will be able to yield at least one straight, well-formed and sound piece of clear-bole. The log should be acceptable by the industry for conversion into sam timber or veneer, irrespective of the species of the log.

In the future more and more species will be accepted by the \log market. The log grade is, therefore, not in any way connected to the botanical identification of the tree.

The classification is made by assessing the status of the tree at the time of recording.

There are five Log Grade Classification:
Code No. Description
1 : Good Log Grade, No Defects.
The bole of the tree is straight and well-formed, without defects, injury or decay from the end of buttress to crown point. The tree may be of commercial size now or will in the future grow to commercial size, minimum acceptable trunk height is 5 meters.

2 : Acceptable Log Grade, Some Defects.
The tree contains at least one straight and well-formed section of clear bole that either now or in the future will yield one piece of sawlog. The rest of the bole contains some deformity, injury, damage or decay. If the tree is alright but the trunk height is less than 5 meters, use this code.

3 : No Log, Stem Deformed
The tree does not contain any section of the bole which is of sawlog quality neither now nor in the future. The reason is that the bole is bend, crooked, fluted, branched, twisted, spiralled or with heavy buttresses. Use this code for trees with a heavy lean $>45^{\circ}$.

No Log, Stem Damaged

Physical injury to the stem has damaged the bole to the extent that no possibilities remain for using the bole as a sawlog, neither now nor in the future.

5 : No Log, Stem Decayed
Due to decay or rot the tree does not contain one sound section of the bole 4 meters long. In the cases where a tree is both deformed and/or damaged and/or decayed, give priority to recording the decay. In cases where heart rot or hollow stems are suspected, but cannot be positively verified from looking at the tree from the outside, disregard the suspicion and record the tree as sound. No boring is to be done.

4.8 Crop Tree Status : 35

The crop tree status is only scored in the 'Silvicultural Treatment of Logged-over Forest' plots where the crop tree status is recorded for all living, standing, complete trees (SIC $=111$), $\geq 15 \mathrm{~cm} \mathrm{DBH}$. In the other plots the code is zero-filled.

There are 3 classes :
1 : Crop Tree is sound and straight without defects and the species belong to the list of preferred species. The tree will grow to yield a good grade of timber.

2 : Potential Crop Tree is sound and straight without defects and the species belong to the list of potentially acceptable species.

3 : Non-Crop Tree is not able to yield at least one good log 5 meters in length, or the species is not listed as preferred or acceptable.

4.9 Crown Form : 36

The crown form is recorded for all living, standing, complete trees $(S I C=111), \geq 15 \mathrm{~cm}$ DBH.

The crown form is important for the growth of the tree. The distribution of crown forms before and after a logging operation also indicates the amount of damage inflicted on the crowns of the remaining trees.

There are six Crown Forms classes :
Code No. Description
1 : Complete Circle. Circular and symmetrical.
2 : Irregular Circle. Slight defects of symmetry and some dead branch tips.

3 : Half Circle. Distinctly asymmetrical or thin, but capable of improvement if room is available or provided by treatment.

4 : Less Than Half Circle. Unsatisfactory, with extensive dieback, strong asymmetry, a few living branches, likely to survive.

5 : Only a Few Branches. Suppressed, degenerating or badly damaged, not likely to grow or survive.

6
: Mainly coppice. Main part of crown originating from coppice sprung from broken branches after severe damage.

Refer to Fig. 8 for examples of crow form classes.

Figure 8. Crown Form Classes

4.10 Crown Illumination/Dominance : 37

The crown illumination/dominance is recorded for all living, standing, complete trees (SIC $=111$), $\geq 15 \mathrm{~cm}$ DBH.

The crown illumination/dominance describes the amount of sunlight received by the crown and the crowns competitive status. It is one of the significant factors affecting the growth of the tree.

When estimating the influence of neighbouring vegetation, disregard dead and broken trees, but do assess the shade given by palms and bamboo.

There are four Crown Illumination/Dominance classes :

Code No. Description

1 : Emergent/dominant. Full light reaches the sides of the crown at an angle of at least 45 degrees from the vertical.

2
Full Overhead Light/Co-dominant. Upper part of crown fully exposed to overhead light, but sides of crown do not receive full light due to competition from other co-dominant crowns.

3 : Some Overhead Light/Dominated. Part of the crown is exposed to vertical light, but part is shaded from dominant crowns above.
: No Direct Light/Suppressed. The crown is suppressed and receives only light. filtered through the crowns of other trees and other vegetation.

Refer to Figure 9 for examples of crown illumination/ dominance.

Figure 9. Crown Illumination, Dominance.

1. Emergent/Dominant

2. Full Overhead Light/ Co-dominant

3. Some Overhead Light/ Dominated

4. No Direct Light
5. No Direct Light

Suppressed/Intertwined

4.11 Stem Damage : 38

The stem damage is recorded for all living, standing, complete trees ($\mathrm{SIC}=111$), $\geq 15 \mathrm{~cm} \mathrm{DBH}$.

Only recent, fresh damage is recorded, old damage that has turned to rot is scored under the Log Grade, broken stems are recorded through the Tree Identity Class (SIC : 112 or 113).

There are 4 classes :
Code No. Description
1 : No Damage to the Stem.
2 : Slight Bark Damage of less than 1 meter in extent.
3 : Medium Bark Damage either 2 damages of less than 1 meter or 1 damage of from 1 to 3 meters in extent.

4 : Heavy Bark Damage either 3 damages of less than 1 meter or 2 damages of from 1 to 3 meters or 1 damage of more than 3 meters in extent.

4.12 Crown Damage : 39

The crown damage is recorded for all living, standing, complete trees $(S I C=111), \geq 15 \mathrm{~cm}$ DBH.

Only recent, fresh crow damage is recorded, old damage is recorded through the crown form class. Broken stems, where most of the crown is broken off, are recorded through the Tree Identity Class (SIC : 112 or 113).

There are 5 classes :
Code No. Description
1 : Less than 5% damage to the crown.
2 : From 5\% to less than 25% damage to the crown.
3 : From 25% to less than 50% damage to the crown.
4 : From 50% to less than 75% damage to the crown.
5 : From 75% to less than 100% damage to the crown. If 100% of the crown is damaged consider it as at broken stem of SIC 112 or 113.

4.13 Impeding Wines and Climbers : 40

The impeders are recorded for all living, standing complete trees $(S I C=111) \geq 15 \mathrm{~cm}$ DBHob.

The purpose of this classification is to assess the way in which impeders such as woody climbers and vines invade the different forest types and to see how logging and silvicultural treatment effect the occurrence of impeders.

The classification is as follows:

Code No.
Description
1 : Impeders not Present.
No Climbers or Wines on the Tree.
2 : Impeders Present but not Affecting the Tree.
Climbers and or wines are present, but they do not hinder or restrict the nomal growth and development of the tree and its crown.

3 : Impeders Restricting the Grouth.
The normal growth and development of the tree is restricted by impeders growing, on the trunk or competing for light in the crown. However, the continued life of the tree is not yet affected.

4 : Impeders Seriously Affecting the Growth.
It left unchecked, the impeders are likely to be seriously deforming or even killing the tree. Branches are already dead in the crown or the trunk has already been deformed.

5 : Impeders Recently Cut and Dead.
A few may still be living, but as long as they no longer harm the tree, use this code to indicate a successful treatment by climber cutting.

6 : Impeders Recently Cut but Treatment not Successful.
Remaining climbers whether living or dead, still restrict the growth of the tree.

Note : The effects of the strangler figs, if found, are recorded under this classification.

5 RECORD CLOSED.

For the permanent experimental plots, in order to record in an orderly manner the final entry of a stem which no longer occupies a position in the stand, the following procedure for "Closing the record" of that stem must be followed.

When a tree, due to a change in tree identity class, enters one of the bracketed or cross-hatched SIC-classes in the table, the record for that stem is to be closed. "That is, enter the stem on the fieldcard in the usual manner writing the DBHob of the latest enumeration. Then, at the bottom of the fieldcard, write the consecutive tree number and the year of the enumeration. Following that, no further records will be made of that particular stem in future assessments.

The consecutive tree number of any stem thus entered in "pecord Closed" must never be used again in that Quadrat.

Write the words "Records Closed" in the line for the stem under the stem descriptions. The record is to be closed when the stem enters one of the following SIC classes :

```
Tree, not found : 119, 129,139
```

Tree, dead standing, broken : 133, 134
stump or cut stump
Tree, dead fallen, all types : 141, 142, 143
144, 145
6. RECORDING POLES, SAPLINGS, SEEDLINGS AND WILDLINGS

In order to get information on advanced regeneration, poles with a DBHob of 5.0 cm or more are enumerated in the 9 central quadrats. This information is important for the correct assessment of the future recruitment and productive potential of the site.

6.1 Definition of Poles

A pole is defined as a stem of tree species having a diameter at breast-height over bark (1.3 m) from 5.0 cm up to but not including 15.0 cm .

The pole may originate from a seed, root-sucker, coppice or otherwise, it is only the diameter at breast-height that counts. Only living poles are enumerated, dead poles are not considered.

6.1.2 Details of the Fieldcard Entries for the Recording of Poles

Poles are recorded on the same fieldcards as trees. For the Quadrats where poles are enumerated the stocking code is $=1$. However if there are no poles, nor trees to be recorded, i.e. the quadrat is empty, the stocking code is $=0$.

For the poles, only the following information is recorded:
Consecutive Tree Number
Stem Identity Class, same as for trees
Botanical name and code
Diameter at Breast Height over bark
The following items are not to be recorded:
Height
Log Grade
Crop tree status
Crown Form
Crown Illumination/Dominance
Stem damage
Crown damage
Woody Climbers
Whenever records for the Quadrat also requires the use of a second fieldcard, write "continued" on the last line of the first fieldcard, and on the first line of the second fieldcard.

On the line below the last entry for a subplot write "End". When a pole dies or disappears, the procedure for "Record Closed" is followed as for trees, see section 5 .

6.2 Definition of Saplings

A sapling is defined as having a total height of 150 cm or more and a diameter at breast height of up to $5,0 \mathrm{~cm}$. The saplings are individually tagged and numbered. In order to differentiate the sapling numbers from the tree numbers the number is preceded by the letter "A".

6.2.1 The Sapling Subplot.

The sapling subplot is placed at the northwest comer of the Quadrat and is 5 meters by 5 meters square. It is marked by 4 plastic tubes. In order to avoid cutting and trembling along the Quadrat boundary, a plastic ribbon is strung between the 3 corner tubes.

6.2.2 Details of the Fieldcard Entries for the Recording of Saplings

For the recording of saplings, fieldcard version no. 2, card number 2 , is used, refer to Appendix I. 2.

The locality information / filename is the same as for trees. The subplot identification is constructed in a similar manner, the subplot numbers run consecutively from 26 to 34 . The forest class is scored separately from the quadrat to reflect the situation in the subplot. The same codes are used.

All the entries up to and including the botanical codes are similar to those for trees and poles except for stem identity class (SIC).

STEM IDENTITY CLASS for SAPLINGS Height $>150 \mathrm{~cm}$ DBH up to 5.0 cm	XX1	XX2	XX4	XX9
	Compl. Stem	Broken Stem	Cut Stump	Not Found
a) TREE SPECIES,				
LIVING STEMS ONLY				
Standing	211	212	214	(219)
Fallen	221	222	224	(229)
Successful Sapling :	216			

Figure 10. Stem Identity Classes for Saplings.

- Diameter DBHob : 28,29

The diameter is measured for all saplings reaching 2.0 cm at breast height over bark and up to 5.0 cm . In the case where the sapling diameter is exactly 5.0 cm or larger it is considered a successful sapling and it is not recorded in the future on the sapling fieldcard but included among the poles on the tree / pole fieldcard and given a new unique number in
the tree / pole series (see section 4.2). For a successful sapling the last entry on the sapling fieldcard is the SIC = 216 and the diameter.

- Total Sapling Height : 30,31,32

The total sapling height is measured in decimeters for saplings from 150 cm in height and until the sopling reaches a diameter of 2.0 cm , thereafter only the diameter is measured.

- Vigour : 33

The last entry for saplings is the vigour :
1 : Stem of good form and sound.
2 : Stem not of good form but sound; or of good form but not sound.

3 : Stem of poor form, unsound, damaged or rotten. If broken, use stem identity class 212. If fallen, use the appropriate stem identity class. Dead saplings are not recorded.

6.3 Definition of Seedlings

Seedlings are defined as plants of tree-species from a height above ground to top of stem (terminal bud) from 15 cm up to 150 cm .

6.3.1 The Seedling Subplot.

The seedling subplot is placed at the northeast comer of the Quadrat inside the sapling subplot and is 2 meters by 2 meters square. It is marked by 4 plastic tubes. In order to avoid cutting and trembling inside the seedling subplot, a plastic ribbon is strung between the 4 corner tubes all around the seedling subplot.

6.3.2 Details of the Fieldcard Entries for Recording Seedlings

For the recording of seedlings, fieldcard version no. 2, card number 3 is used, refer to Appendix I. 3.

The locality information / filename is the same as for trees. The Subplot identification is constructed in a similar manner, the subplot numbers run consecutively from 35 to 43 . The forest class is scored separately from the quadrat to reflect the situation in the subplot. The same codes are used.

The seedlings are not individually numbered and on the fieldcard the number of seedlings found per species is counted. The stem identity class (SIC) used are as given below, only living standing seedlings are counted.

STEM IDENTITY CLASS for SEEDLINGS Height $>15 \mathrm{~cm}$ up to 150 cm	XX1	XX2	XX4
	Compl. Stem	Eroken Stem	Cut Stump
TREE SPECTES, LIVING STEMS ONLY Standing	311	312	312

Figure 11. Stem Identity Classes for Seedlings.

When a seedling reaches a total height of 150 cm it is no longer counted as a seedling but numbered and enumerated among the saplings.

6.4 Recording of Planted Wildlings

In both experiments, wildings are planted to investigate the performance of plantation establishment and enrichment planting. For the layout refer to the "Procedure for Establishment of Study Area ..." (Forestry Department, 1993 a and b)

6.4.1 Details of the Fieldcard Entries for Recording Wildlings

For the recording of planted wildlings, fieldcard version no. 2, card number 4 is used, refer to Appendix I. 4.

The locality information / filename is the same as for trees. The planting line identification is constructed in a similar manner, the planting line numbers run consecutively from 1 to 17 for plantation establishment and from 1 to 10 for enrichment planting. The forest class is not scored for the planting lines, the FCL is zero filled.

The wildlings are individually numbered on the fieldcard and tagged in the forest. On the fieldcard all the possible plant positions are numbered from 1 to 33 per line. In the cases where a wilding could not be planted due to stream, rocks, swamp etc. the stem identity class (SIC) is 318. The other stem identity classes (STC) are as given below.

STFM IDENTITY CLASS for WILDLINGS	$\mathrm{XX1}$	Xx 2	$\mathrm{XX4}$
	Compl. Sten	Eroken Sten	Cut Stump
LIVING STEMS			
Standing	311	312	314
Fallen	321	322	324
DEAD STEMS			
Standing	331	332	334
Fallen	341	342	344
Not Planted	318		

Figure 12. Stem Identity Classes for Wildings.
When a wildling reaches a diameter at breast height of 50 mm it is no longer regarded as a seedling but given the SIC for a tree / pole as appropriate.

The botanical code for the planted Wildings are given as for trees and poles.

- Diameter DBHob : 28,29,30,31

The diameter is measured for all wildings reaching 5.0 cm at breast height over bark and up. When the wildling diameter reach exactly 5.0 cm or larger it is considered a successful wilding. Only the SIC changes to that of a tree / pole, the remaining information is soored unaltered and on the same fieldcard number 4.

- Total Wilding Height / Trunk Height : 32,33,34

The total wildling height is measured on all wildings from 15 cm and until the wilding reaches a diameter of 5.0 cm . Eor wildlings larger than 5.0 cm Derob only the total height of 30 dominant wildings is measured to the nearest meter. The first 30 wildings reaching above 5.0 cm are considered dominant. If a dominant wilding dies, the height of the largest (DEHob) non-dominant wildling is included.
In order to get a fired point from where to measure the height of the small wildlings, a ring is painted around the stem 10 cm above the ground at time of planting. The ring is repainted at the same spot at each enumeration until the milding reach 5.0 cm DBHob.

- Vigour : 35

The vigour is scored for the wildings below 5.0 cm DBHob :
1 : Stem of good form and sound.
2 : Stem not of good form but sound; or of good form but not sound.

3 : Stem of poor form, unsound, damaged or rotten. If broken use stem identity class 312. If fallen or dead use the appropriate stem identity class.

Vigour will not be scored for wildings reaching 5.0 cm DBHob once it is being replaced by the Log Grade.

- Log Grade : 35

The Log Grade replaces vigour and will only be scored for wildlings having a diameter of 5.0 cm and above and with SIC $=111$.

The Log Grades are the same as for trees, section 4.7.

- Crown Form : 36

Crown form is scored for all living small wildlings having SIC $=311$, 312 and 314 and for large wildlings of 5.0 cm DBHob or more having $S I C=111$.

The Crown Form codes are the same as for trees, section 4.9.

- Crown Illumination / Dominance : 37

Crom Illumination / Dominance is scored for all living small wildlings having $S I C=311,312$ and 314 and for large wildings of 5.0 cm DBHOb or more having $\mathrm{SIC}=111$.

When scoring the crom illumination / dominance the surrounding vegetation is taken into account. This will provide an indication of the need for a liberation treatment to release the wildings from competition. The crom illumination / dominance codes are the same as for trees, section 4. 10 .

- Site Condition : 38

The site condition is scored for all wildings living, fallen or dead of all stem identity classes, as a means of explaining the fate of the wildling.

The site condition codes are :
1 : Good site, no restrictions
2 : Good site, but with restricting vegetation, (other trees, palms, bamboo, ferris etc.)

3 : Poor site/ rocky/ steep slope

4 : Visible erosion on forest floor
5 : Land slip or land slide, earth moving
6 : Stream, stream bed, swamp, impounded water
7 : Tractor track, skid trail, no erosion
8: Tractor track, skid trail, with erosion
9: Log landing, main road

Score the site condition at the planting apot and the immediate vicinity. rhis code serves the same purpose as the forest class.

- (Column 39, reserved for future use)
- Woody Climbers : 40

Woody climbers are scored for living, standing vildings of SIC $=311,312,314$ and 111 only.

The codes for woody climbers are the same as for trees.

7. SKETCH-MAP OF THE QUADRAT

Printed on the fieldcard is a representation of the Quadrat at a scale of 1:400. The Quadrat is subdivided into units of 4 meters by 4 meters on the fieldcard for trees/poles.

Record the approximate position of each tree and its consecutive stem number. This is very useful for finding the trees during a reassessment of the plot when some years have passed. Mark fallen trees and cut stumps. Then mark any distinct terrain features, such as rock outcroppings, rivers and streams, tracks and roads.

This information will assist in making the proper conclusions when analyzing the data in the office.

From the sketch-map of the Quadrats a composite map of the whole block can be drawn.

Remember to orientate the fieldcard correctly according to the geographical orientation of the block.

On the fieldcards for saplings and seedlings, the location of the subplot is drawn for information only, no sketch or location of saplings and seedlings is required.

For the planted wildings, special location maps are prepared separately.

8. PRACDICAL INSTRUCTIORS

The practical side of the job is well know from similar work. The instructions given below are given only as a guideline.

The permanent posts of plastic tube are placed in the ground and marked by metal tags. The flag stakes marking the Quadrat are also set out.

NOTE : Do not cut any stakes or any lines of sight inside the 100 meter by 100 meter Block. If line of sight is obstructed, use a denser spacing of flag stakes cut from outside the block. Check the correct straight line using the compass.

If nylon ropes are used they must be checked every day against the steel tape.

Make sure to disturb as little as possible inside the quadrats and subplots.

An exact logbook and compass card giving all details required to relocate the blocks is prepared. The logbook and compass cards must be carefully kept and filed for future reference.

8.1 Crews for the Enumeration Work

The number of crews for the enumeration work will depend on how many experienced staff are available. At least two crews should be available per forest location. Each crew consist of 3 staff and 3 to 5 labourers, as a minimum requirenent.

Staff : 3 skilled and experienced foresters.
One Crew Leader and fieldcard recorder, who is responsible for the work.
One Tree Measurer and identifier, who will measure and describe the trees according to the instructions. He must be the best man available for the botanical identification.

One compass leader who is responsible for the location of the Blocks and the staking out and marking of the quadrats.

The 3 staff must be able to cooperate and assist each other in the enumeration work.

Labourers : Three to five
The labourers will assist the stafe in the practical task of setting up the stakes and flag poles, checking that trees inside the quadrat are enumerated and other tasks as reguired.

The laboures must be clearly instructed not to cut anything inside the block, quadrats and subplot:. All stakes and postis are to be cut in the surrounding forest at least 10 meters from the boundary of the block.

8.2 Training Course and Supervision

Before the start of the field season a 3 day training course for all field crews are given. The course consist of a one-day thorough presentation and explanation of the inctructions for the enumeration work and a full explanation of the measurements and scoring to be used for the forest classification and the individual tree measurements.

The theoretical part is followed by two days of practice in the forest where all the staff take turns to do all the tasks and where the work is carefully supervised, corrected and evaluated.

It is important that the staff has a uniform comprehension of the measurements and the scoring of the various parameters in order to get reliable information for the growth and yield calculations. In order to facilitate the uniform and reliable field enumerations the crews must be continuously supervised and monitored by Senior forest Officers who has a full understanding of the enumeration work and the importance of maintaining reliable records in permanent sample plots. In addition a skilled forest botanist should be employed to supervise and check in the botanical identification, which is one of the most difficult part of the fieldwork.

8.3 Checking the Recording in the Field

The first time these instructions are used, the fieldwork should be checked and adjusted if necessary. Then a few guadrats have been enumerated, the crews should change place and enumerate at least 10 Quadrats in another block previously enumerated by the other crew. A new set of fieldcard specially marked for the purpose is handed out to the crews. The crews are not to have access to the original fieldcards during the checking.

When the Quadrats have been reassessed the two sets of fieldcards are compared and any differences are discussed. If there is anything indicating that the reason for the differences is calused by a misunderstanding of the instructions, these musi be explained more clearly. Suggestions should also be made to upgrade the instructions in order to avoid misunderstandings in the future. Any systematical type of difference must be carefully analyzed and the cause corrected. For an investigation of this type, however, differences due to subjective judgement cannot be completely avoided.

It is important to conduct training courses before the start of each field season and whenever new crevs are taken in, As meny questions as possible should be resolved during the training courses.

8.4 Organizing the Work

The enumeration work should progress systematically. wen more than one crew is available they should work in different blocks and the crew should finish one block before moving to the next.

The crew should first identify in which block they are going to work and the layout and numbering system used for the Quadrats and subplots. Then make sure that the flag stakes are situated correctly along the Quadrat boundaries.

The heading information of the fieldcard is recorded, except the forest class of the Quadrat which is carefully assessed last. Now proceed to record the trees. All the line entries should be completed for one tree at a time before moving to the next. All descriptions must be carefully announced by the tree measurer and clearly repeated by the fieldcard recorder. When converting the description to the code number, check the manual. The botanical codes are to be filled in later in the camp.

When all the previously tagged trees have been enumerated, look carefully to check for new recruits that have passed over the minimum diameter for the quadrat. The minimum diameter for new recruits in the 16 outer quadrats $i s 15.0 \mathrm{~cm}$ and for the 9 central quadrats is 5.0 cm . The new recruits are numbered individually using a new unique number that has never before been used in the quadrat. For successful saplings that previously had a sapling number beginning with an "A", the "A" rumber is discarded and the sapling given a new number in the Trees / Poles series.
The correct unique numbering is very important for the analysis of the data.

When all trees / poles and new recruics have been recorded on the fieldcard, write "End" belon the last entry. When it is required to use more than one fieldcard, write "Continued" on the last line of the first fieldcard and on the first line of the second fieldcard.

Now record the Forest class as all information to score correctly the Forest Class is available.

Before moving to the next Quadrat check that all items on the fieldcard are completed.

The number of Quadrats that a crew can manage to enumerate during a day's work is about 20 to 40 depending on the terrain and the density of the forest.
9. CHECKING THE FIELDCARD RECOPDS

A careful and systematic check of the items recorded on the fieldcard while still in the field, assists greatly towards simplifying and reducing the expense of editing and error correction work in the office and during data processing.
To ensure the best result, check the days work after retuming to the base-camp. Exchange fieldcards so that crews are not checking their own work.

9.1 The Fieldcards

Check to ensure that data from only one Quadrat recorded on each fieldcard. Make sure that the word "End" is written below the last entry for each Quadrat. Whenever more than one fieldcard is required, check the presence of the "Continued" below the last entry on the first fieldcard and above the first entry on the second fieldcard and check that the fieldcard bear the number $2 / 1,2 / 2$ or $3 / 1,3 / 2,3 / 3$ etc. when more than one fieidcard is needed.

9.2 Locality Information

In addition to the date of enumeration, check that the following information and code numbers appear correctly on each fieldcard for both Quadrats and subplot.

- Forest locality
- Type of treatment
- Year of enumeration
- Date of fieldwork
- Crew leader

9.3 Quadrat Information

Stocking of Quadrat

Check that if the code for stocking is "0" then nothing is recorded under the individual line entries and that the word "Empty" is written in the first line.

Check that if the stocking code is "1" then at least one tree, alive or dead is recorded under the individual line entries. Check that the minimum diameter is 150 mm or 50 mm .

Forest Class of Quadrat
Check that a valid code for forest class is entered on each fieldcard.

Check that the rules for Forest Class are followed i.e. that the size of the largest tree $S I C=111$, loggrade $=1$ or 2 correspond to the main Forest Class, and, if there are a number of pioneer species, that this is reflected in the Forest Class according to the instructions.

Logging roads and landings take precedence over the other codes.

9.4 Quadrat Identification

Check the presence and correctness of:-

- Treatment number
- Block number
- Quadrat number / subplot number / plant line number

Check that the Quadrats appear in the right sequence within each block. Check that all Quadrats are present and that no Quadrat appear more than once.

Errors of this type always causes serious trouble during data processing, so check carefully.

For this study, the Quadrats containing pole measurements (DBHob 50 mm and above) have been fixed at the 9 central quadrats. Check that only these quadrats contain pole measurements.

9.5 Individual Tree Entries

- Quadrats

a) Consecutive Tree Number

Check that no consecutive stem number appears more than once. During reassessments also check that none of the numbers recorded under "Record Closed" are used for new stems.

b) Tree Identity Class

Check that the tree identity classes are valid codes. During reassessments check for unlikely changes in SIC such as when a previously dead stem is now recorded as a living tree. Check that the descriptions for:-

- Trunk Height
- Tree Status
- Log Grade
- Cromn form
- Crow illumination./ dominance
- Stem damage
- Cróm damage
- Woody climbers
are only recorded for $S I C=111$ and trees DBHob of 150 nm and above.
c) Vernacular name, Wood quality Group and Botanical Code

Check carefully the conversion of Vernacular name to mood Quality group and botanical code according to the species list provided. Check that only vernacular names that are on the species list are used. Avoid names used only in a local dialect.

In cases where new species are encountered COLTECT SPECTMEN, the code numbers to be used will be decided later in tho office. Check that a separate list is made of the new species and in which Quadrats they are found. Check the correct labeling of the specimens collected.

During later reassessments, check that the botanical identification is the same as previously recorded for the same stem. If not, an explanation must appear on the fieldcard and supported by leaf specimen.

Check that only dead unidentified stems have the botanical code 0.00.00. Living unidentified stems are given the botanical code 7.00 .00 .

Errors in the code numbers for wood quality group and for botanical identification are the most common types of errors found during data processing.

d) Diameter at Breast-Height Over Bark

Check that no diameter below 150 mm for trees and 50 mm for poles millimeters are recorded. Check for unlikely large diameters.

For reassessments, check that the diameter increment is within reasonable limits. Negative growth or no growth may occur for broken or dead stems or for trees with poor crom form and illumination. Excessive growth may be due to errors in the measurements or to a change of the point of measurement. All changes of the point of measurement must be noted on the fieldcard giving very good reasons for the change.
e) Trunk Height

Check that height measurement is recorded for all trees SIC $=111$, and DBHob of 150 mm and above, check for unlikely diameter/height relationships
f) Log Grade
g) Crop tree status
h) Crom Form
i) Crown Illumination / dominance
j) Stem damage
k) Crom damage
i) Woody climbers

Check that all the above codes are only recorded for SIC $=111$ and DBHob of 150 mm and above.

A good checking in the field, while it is still possible in the case of serious doubt to go back and check on the ground, save a lot of trouble later in the office. It also saves a lot of time checking and correcting errors during data processing and make the results more reliable.

It is well worth the effort.
10. REFERENCES

Forest Department Headquarters, 1990: "Panduan Penubuhan Petak-
petak Sampel Kekal dan Cara-cara Mengisi Borang-borang Bancian untuk Hutan di Balak", Joint Project Between Malaysia - ITTO on Forest Management of Natural Forest in Malaysia, PD 10/87 (F), Silvieulture Unit, Kuala Lumpur, 34 pp .

- " - - " , 1991: "Panduan Penubuhan Petakpetak Sampel Kekal dan Cara-cara Mengisi Borang-borang Bancian untuk Hutam Asil", Joint Project Between Malaysia - ITTO on Forest Management of Natural Forest in Malaysia, PD 10/87 (F), Management Unit, Kuala Lumpur, 45 pp.
" - " - " - , 1993 a: "Procedure for
Establishment of Study Area in Virgin Forest", Joint Project between Malaysia - ITHO on Forest Management of Natural Forest in Malaysia, PD 10/87 (F) Series No. 1, Management Unit, Kuala Lumpur, 45 pp .
- " - - " - , 1993 b: "Procedure for

Establishment of Study Area in Logged-over Forest", Joint Project between Malaysia - ITTO on Forest Management of Natural Forest in Malaysia, PD 10/87 (F) Series No. 2, Silviculture Unit, Kuala Lumpur, 35 pp. + 12 App.

Hutchinson, I.D., 1982: Field Enumeration of Permanent Sample Plots in the Mixed Dipterocarp Eorest in Sarawak", UNDP/EAO/LAL/76/008, Field Document No. 16, The Forest Department, Kuching, 136 pp .

Idris Mohd. Said, 1991: "Assessment of the Botanical Identification during Field Work", Forest Inventory and Management Systems as Part of Forest Resources Conservation Programme, UNDP/FAO/MAL/89/001, Technical Note No. 5, Forest Dept. HQ., Kuala Lumpur, 56 pp .

Korsgaard, S., 1982: "A Manual for the Computer Programming and Processing of Silvicultural Research Data", UNDP/FAO/MAL/76/008, Field Document No. 6, The Forest Department, Kuching, 124 pp.

- " - 1992: "Manual of Instructions for the Field Enumeration", Forest Inventory and Management Systems as Part of Forest Resources Conservation Programme, UNDP/FAO/MAL/89/001, Field Document no. 2, Forest Dept. HQ., Kuala Lumpur, 56 pp.
, 1993: "Processing of Forest Research Data Suggestion for Enhancement of the Field Enumeration", Joint Project Between Malaysia - ITTO on Forest Management of Natural Forest in Malaysia, PD $10 / 87$ (F), Technical Note no. 2, Kuala Lumpur, 23 pp., inedit.

APPENDICES :
I. The Fieldcards
I. 1 Trees and Poles
I. 2 Saplings
I. 3 Seedlings
I. 4 Wildlings
II. The Species List


```
(SPECTES.LIS)
SPECIES LIST FOR ITTO ENUMERATIONS, DATE 6/8/1993
```


A) DIPTEROCARPS

```
10101 Meranti Merah Tua
10102 Meranti bukit
10103 Meranti nemesu
10104 Meranti sengkawang bulu
10105 Meranti sengkawang merah
10106 Meranti seraya
10107 Meranti seraya daun besar
10201 Meranti Merah/Merah Muda
10202 Meranti bakau
10203 Meranti batu
10204 Meranti bunga
10205 Meranti daun besar
10206 Meranti kepong
10207 Meranti kepong hantu
10208 Meranti langgong
10209 Meranti paya
10210 Meranti pepijat
10211 Meranti rambai daun
10212 Meranti sarang punai
10213 Meranti sarang punai bukit
10214 Meranti tembaga
10215 Meranti tengkawang ayer
10301 Meranti Putih
10302 Meranti belang
10303 Meranti bumbong
10304 Mexanti jerit
10305 Meranti lapis
10306 Meranti laut
10307 Meranti mengkai
10308 Meranti pa'ang
10309 Meranti pipit
10310 Meranti temak
10311 Meranti temak nipis
10401 Meranti Kuning/Damar Hitam
```

10402 Damar hitam bulu
10403 Damar hitam gajah
10404 Damar hitam katup
10405 Damar hitam kelim
10406 Damar hitam pipit
10407 Damar hitam sengkawang putih
10408 Damar hitam siput
10409 Damar hitam siput besar
10410 Damar hitam siput jantan
10411 Damar hitam telepok
t
20502 Mersawa durian
20503 Mersawa gajah
20504 Mersawa kesat

Shorea spp. (Dark red)
Shorea platyclados
Shorea pauciflora
Shorea sinkawang
Shorea sinkawang
Shorea curtisii
Shorea curtisii
Shorea spp. (Red/light red)
Shorea uliginosa
Shorea dasyphylla
Shorea teysmanniana
Shorea hemsleyana
Shorea ovalis
Shorea macrantha
Shorea lepidota
Shorea platycarpa
Shorea johorensis
Shorea acuminata
Shorea parvifolia
Shorea ovata
Shorea leprosula
Shorea palembanica
Shorea spp. (White)
Shorea resinosa
Shorea dealbeta
Shorea henryena
Shorea lamellata
Shorea gratissima
Shorea bentongensis
Shorea bracteolata
Shorea assamica
Shorea hypochra
Shorea roxburghii
Shorea spp. (Yellow)
Shorea longisperma
Shorea gibbosa
Shorea dolichocarpa
Shorea blumutensis
Shorea multiflora
Shorea maxima
Shorea faguetiana
Shorea kuantanensis
Shorea hopeifolia
Shorea peltata
Arisoptera laevis
Anisoptera scaphula
Anisoptera costata

20505 Mersawa kuning
20506 Mersawa merah
20507 Mersawa paya
20601 Merawan
20602 Merawan batu
20603 Merawan bunga
20604 Merawan daun bulat
20605 Merawan gunong
20606 Merawan jangkang
20607 Merawan jantan
20608 Meravan jeruai
20609 Merawan kelabu
20610 Merawan mata kucing beludu
20611 Merawan mata kucing bukit
20612 Merawan mata kucing hitam
20613 Merawan mata kucing merah
20614 Merawan mata kucing pipit
20615 Merawan meranti
20616 Merawan palit
20617 Merawan penak
20618 Merawan siput
20619 Merawan siput jantan
20620 Merawan ungu
20701 Gerutu gerutu
20702 Gerutu gerutu
20703 Gerutu pasir
20704 Gerutu pasir daun besar
20801 Keruing (Berminyak)
20802 Keruing bulu
20803 Keruing gombang
20304 Keruing gondol
20805 Keruing kertas
20806 Keruing merah
20807 Keruing sol
20808 Keruing ternek
20809 Keruing etoi
20810 Keruing mempelas

20901 Keruing (Tidak Berminyak)
20902 Keruing baran
20903 Keruing beledu
20904 Keruing belimbing
20905 Keruing bukit
20906 Keruing cogan
20907 Keruing gasing
20908 Keruing gombang merah
20909 Keruing gunong
20911 Keruing kerut
20912 Keruing kesat
20913 Keruing kipas
20914 Keruing latek
20915 Keruing mengkai
20916 Keruing neram
20917 Keruing padi
20918 Keruing paya
20919 Keruing perak

Anisoptera curtisii
Anisoptera megistocarpa
Anisoptera marginata
Hopea spp. (Merawan)
Hopea beccariana
Hopea pubescens
Hopea latifolia
Hopea montana
Hopea nervosa
Hopea griffithii
Hopea lanceolata
Hopea cescens
Hopea myrtifolia
Hopea cellata
Hopea dryobalanoides
Hopea ferruginea
Hopea johorensis
Hopea sulcata
Hopea dyeri
Hopea mengarawan
Hopea sangal
Hopea odorata
Hopea bracteata
Parashorea spp.
Parashorea stellata
Parashorea densiflora
Parashorea globosa
Dipterocarpus spp. (oily)
Dipterocarpus baudii
Dipterocarpus cornutus
Dipterocarpus keriii
Dipterocarpus chartaceus
Dipterocarpus verrucosus
Dipterocarpus lowis
Dipteroc'arpus palerbanicus
Dipterocarpus dyeri
Dipterocarpus crinitus
Dipterocarpus spp. (non-oily)
Dipterocarpus eurynchus
Dipterocarpus obtusifolius
Dipterocarpus grandiflorus
Dipterocarpus costatus
Dipterocarpus rigidus
Dipterocarpus caudatus
Dipterocarpus kunstleri
Dipterocarpus retusust
Dipterocarpus sublanellatus
Dipterocarpus gracilis
Dipterocarpus costulatus
Dipterocarpus apterus
Dipterocarpus rotundifolius
Dipterocarpus oblongifolius
Dipterocarpus semivestitus
Dipterocarpus coriaceus
Dipterocarpus perakensis

```
21421 Resak pipit
21422 Resak putih
21423 Resak ranting kesat
```


B) NON-DIPTEROCARPS

75101 Antoi

71601 Ara berteh

71602 Ara berteh bukit
71603 Ara berteh paya
81501 Ara, A. kelepong
79201 Asam gelugor
79205 Asam pupoi
89802 Ealik angin
43603 Bakong, Keledang bangkong
32601 Banitan, Jangkang
79210 Bayor bukit
78605 Bayur
79215 Bebusuk, Busok busok, Jahar
78650 Bekak, Telur Belangkas
31701 Bengang
61801 Berangan
89805 Berembang bukit
31901 Bintangor
31902 Bintangor batu
31903 Bintangor bukit
31904 Bintangor bunga
31905 Bintangor bunut
31906 Bintangor daun karat
31907 Eintangor daun panjang
31908 Bintargor gambut
31909 Bintangor gasing
31910 Bintangor gunong daun besar
31911 Bintangor gunong daun kecil
31912 Bintangor jangkang
31913 Bintangor kelim
31914 Bintangor kuning
31916 Bintangor lekok
31917 Bintangor lilin
31918 Bintangor merah
31919 Bintangor putih
32001 Bitis
;2002 Bitis bitis
i2003 Bitis bukit
i2004 Bitis paya
19999 Bungor
3613 Cempedak
'9999 Cemperai
9305 Cenderai, Dedamak
8610 Chempaka
2101 Damar minyak
2201 Dedali
9305 Dedamak, Cenderai
9101 Delek
9220 Duku hutan, Langsat
2301 Durian, D. hantu

Vatica lowii
Vatica perakensis
Vatica odorata

Cyathocalyx spp.
Parartocarpus spp.
Parartocarpus bracteatus
Parartocarpus venenosus
Ficus spp.
Garcinia spp.
Sarcotheca spp.
Mallothus spp.
Artocarpus integer silvestris
Xylopia spp.
Schoutenia spp.
Pterospermum spp.
Cassia spp.
Aglaia (Amoora) spp.
Neesia spp.
Castanopsis spp.
Duabanga spp.
Calophyllum spp.
Calophyllum inophylloide
Calophyllum symingtonianum
Calophyllum curtisii
Calophyllum macrocarpum
Calophyllum rubiginosum
Calophyllum incrassatum
Calophyllum retusum
Calophyllum pulcherrimum
Calophyllum coriaceum
Calophyllum cunearum
Calophyllum sclerophyllum3
Calophyllum seriblitifolium
Calophyllum flowibundumb
Calophyllum deprensinervosum
Calophyllum wallichianum
Calophyllum canum
Calophyllum alboramulum
Palaquium spp.
Palaquium spp.
Falaquium stellatum
Palaquium ridleyi
Lagerstroemia spp.
Artocarpus interger
Champereia spp.
Grewia spp.
Aromadendron elegans
Agathis borneensis
Strombosia javanica
Grewia spp.
Anisophyllea spp.
Lansium spp.
Durio spp.

32302	Durian batang	Durio malaccensis
32303	Durian beludu	Durio oxleyanus
32304	Durian bujor	Durio singaporensis
32305	Durian daun	Durio lowianus
32306	Durian daun besar	Durio macrophyllus
32307	Durian daun tajam	Durio pinangianus
32308	Durian ijau laut	Durio wyatt-smithii
32309	Durian kampong	Durio zibethinus
32310	Durian merah	Durio graveolens
32311	Durian paya	Durio carinatus
37201	Durian punggai, Punggai	Ceolostegia griffithii
32312	Durian tupai	Durio griffithii
32401	Ekor	Dacrydium spp.
89810	Gambir, G. hutan	Maesa spp.
79225	Gapis	Saraka spp.
79201	Gelugor, Asam gelugor	Garcinia spp.
32501	Geronggang	Cratoxylum spp.
32502	Geronggang derum	Cratoxylum formosum
32503	Geronggang derum bukit	Cratoxylum maingayi
32504	Geronggang derum seluncor	Cratoxylum cochinchinense
32505	Geronggang geronggang	Cratoxylum arborescens
89815	Hampas tebu	Gironniera spp.
89820	Hujan panas	Breynia spp.
79245	Inggir burong, Pagar anak	Ixonantes spp.
$\begin{aligned} & 68404 \\ & t \end{aligned}$	Ipoh	Antiaris toxicaria
32601	Jangkang, Banitan	Xvlopia spp.
32602	Jangkang bukit	Xvlopia ferruginea
32603	Jangkang paya	Xylopia fusca
72701	Jelavai	Terminalia spo.
72702	Jelavai jaha	Terminalia subspathulata
72703	Jelawai ketapang	Terminalia catappa
72704	Jelavai mempelam babi	Terminalia phellocarpa
72705	Jelawai mentalun	Terminalia calamansanai
32801	Jelutong	Dyera costulata
79230	Jelutong bedak	Tabernaemontana spp.
79999	Jenjulung	Agrostistachys spp.
7410.3	Jering	Pithecellobium jexinga
79215	Jahar, Busok busok	Cassia spp.
62202	Kamap	Strombosia maingayi
78655	Kandis, Manggis	Garcinia spp.
72901	Kangsar, Kasah	Pterygota horsfieldii
78615	Karas	Aquilaria malaccensis
72901	Kasah, Kangsar	Pterygota horsfieldii
63001 Ka	Kasai	Pometia spp.
63002	Kasai daun besar	Ponetia pinnata
63003 K	Kasai daun kecil	Pometia pinnata alnifolia
63004	Kasai daun licin	Pometia ridleyi
63101 k	Kayu arang, Meribut, Tuba	Diospyros spp.
33201 K	Kedondong	Family of burseraceae
33202 K	Kedondong bulan	Canarium littorale
32203 K	Kedondong bulan bulu	Canarium littorele tomentosum
33204 K	Kedondong gergaji	Camarium littorale forma
322051	Kedondong kemasul	Canarium apertum

33206	Kedondong keruing	Canarium megalanthum
33207	Kedondong putih	Canarium littorale forma
33208	Kedondong senggeh	Canarium pseudosumatranum
33209	Kedondong kerut	Dacryodes rastrata
33210	Kedondong matahari	Dacryodes rugosa
33211	Kedondong mempelas	Dacryodes laxa
33212	Kedondong serong	Dacryodes puberula
33213	Kedondong kerantai	Santiria spp.
33214	Kedondong kerantai bulu	Santiria tomentosa
33215	Kedondong kerantai licin	Santiria laevigata
33216	Kedordong sengkuang	Scutinanthe brunnea
33217	Kedondong kijai	Triomma malaccensis
73301	Kekabu hutan	Bombax valetonii
53401	Kekatong	Cynometra spp.
53402	Kekatong kekatong	cynometra malaccensis
33403	Kekatong laut	Cynometra iripa
73501	Kelat	Eugenia spp.
13502	Kelat gelam	Eugenia cerina
73503	Kelat jambu laut	Eugenia grandis
13504	Kelat merah	Eugenia chorantha
13505	Kelat paya	Eugenia papillosa
18665	Kelat samak, Samak	Theaceae spp.
13501	Keledang	Artocarpus spp.
13602	Keledang babi	Artocarpus anisophyllus
13604	Keledang keledang	Artocarpus lanceifolius
13605	Keledang tampang	Artocarpus nitidus
13606	Keledang tampang bulu	Artocarpus dadah
13607	Keledang tampang gajah	Artocarpus fulvicortex
$!3608$	Keledang tampang hitam	Artocarpus gomezianus
13609	Keledang temponek	Artocarpus rigidus
13701	Kelempayan	Anthocephalum chinensis
'8620	Kelumpang	Sterculia spp.
13801	Kembang semangkok	Scaphium spp.
13802	Kembang semangkok bulat	Scaphium linearicarpum
13803	Kembang semangkok jartong	Scaphium macropodun
9999	Kemenyan, Kemian	Styrax spp.
3901	Kempas	Koompassia malacoensia
9999	Kemuning	Hunteria spp.
9825	Kenidai, Kernam	Eridellia spp.
4001	Keranji	Dialium spp.
4002	Keranji bulu	Dialium kingii
4003	Keranji kuning besar	Dialium platysepalum
4004	Keranji kuning kecil	Dialium wallichii
4005	Keranji paya	Dialium patens
4006	Keranji tebal besar	Dialium laurinum
4007	Keranji tebal kecil	Dialium maingayi
4008	Keranji tunggal	Dialium procerum
4101	Keredas	Pithecellobium bubalinum
9825	Kernam, Kenidai	Bridellia spp.
7306	Kikir buntal, Rambutan pacat	Eerospermum spp.
4602	Kubin, Mahang gajah	Macaranga gigantea
4201	Kulim	Scorodocarpus borneensis
9999	Kundang, K. rumania	Bouea spp.
4102	Kungkur	Pithecellobium splendens
9220	Langsat, L. hutan, Duku h.	Lansium spp.
4502	Lanjut	Mangifera lagenifera
4301	Leban	Viter spp.
9999	Limau, Merlimau	Citrus spp.

77303 botong, Sanggol lotong 84401 Ludaj

34501 Machang
34503 Machang machang
84601 Mahang, Mersepat
84602 Mahang gajah, Kubin
84603 Mahang merah
84604 Mahang putih
34504 Mangga
78655 Manggis, M. hutan, Kandis
49105 Mata keli
79999 Mata kuching
74701 Mata ulat
64801 Medang, M. pepijat
64802 Medang payong
64803 Medang kemangi
64804 Medang teja
79265 Melokam, Rokam
64901 Melunak
64902 Melunak bukit
64903 Melunak pusat beludu
49110 Membuloh
65001 Mempening
35101 Mempisang
79999 Mempoyan
89830 Menarong, Mengkirai
89835 Mendong
89830 Mengkirai, Menarong
79999 Mengkudu, M. hutan
45201 Mengkulang
45202 Mengkulang jari
45203 Mengkulang jari bulu
45204. Mengkulang siku keluang

75301 Mengkun
79235 Meraga
48660 Meransi
50216 Meranti melantai
65401 Merbatu
65402 Merbatu pipit
55501 Merbau
63101 Meribut, Tuba buah, Kayu arangDiospyros spp.
79999 Merlimau, Limau
65601 Merpauh
65602 Merpauh daun runcing
65603 Merpauh daun tebal
65604 Merpauh periang, Pauh p.
84601 Mersepat, Mahang, Musafat
78630 Mertas
79999 Merumbung, Gambong
43610 Miku
65701 Minyak berok
43611 Nangka
79999 Nemali, Mali-mali
89840 Nipis Kulit
35801 Nyatoh
35802 Nyatoh ketiau
35803 Nyatoh gunong

Nephedium eriopetalum
Sapium baccatum
Mangifera spp.
Mangifera longipes
Macaranga spp.
Macaranga gigantea
Macaranga triloba
Macaranga hypoleuca
Mangifera indica
Garcinia spp.
Gynotroches spp.
Dimocarpus (Euphoria) spp.
Kokoona spp.
Family of Lauraceae
Actinodaphne maingayi
Cinnamomum porrectum
Cinnamomum javanicumt
Flacourtia spp.
Pentace spp.
Pentace curtisii
Pentace triptera
Pellacalyx spp.
Lithocarpus spp.
Annonaceae spp.
Rhodamnia spp.
Tremáspp.
Eleocarpus spp.
Trema spp.
Morinda spp.
Heritiera spp.
Heritiera javanica
Heritiera sumatrana
Heritiera simplicifolia
Tetrameles nudifelora
Pertusadina spp.
Carallia spp.
Shorea macroptera
Family of Atuna
Parinari costata
Intsia palembanica
Citrus spp.
Swintonia spp.
Swintonia penangiana
Swintonia spicifera
Swintonia schwenkii
Macaranga spp.
Ctenolophon parvifolius
Vernonia spp.
Artocarpus lowii
Xanthophyllum spp.
Artocarpus heterophyllus
Leea spp.
Memecylon spp.
Family of sapotaceae
Ganua motleyana
Palaquium reginamontium

```
35804 Nyatoh jambak
35805 Nyatoh kabu
35806 Nyatoh mayang
35807 Nyatoh pipit
3 5 8 0 8 ~ N y a t o h ~ p u t i h
35809 Nyatoh semaram
35810 Nyatoh sidang
3 5 8 1 1 ~ N y a t o h ~ s u r i n ~
35812 Nyatoh taban merah, Taban
35813 Nyatoh taban putih
35814 Nyatoh tembaga
35815 Nyatoh tembaga kuning
35817 Nyatoh ekor
35818 Nyatoh sundek
35819 Nyatoh nangka kuning
3 5 8 2 0 ~ N y a t o h ~ n a n g k a ~ m e r a h ~
79240 Otak udang
79245 Pagar anak, Inggir burong
7 9 9 9 9 ~ P a s a k ~ b u m i , ~ T o n g k a t ~ a l i ~
6 5 9 0 1 ~ F a u h ~ k i j a n g ~
78675 Pelawan
36001 Pelong
36002 Pelong beludu
36003 Pelong licin
7 6 1 0 1 ~ P e n a g a ~
6 6 2 0 1 ~ P e n a r a h a n ~
66301 Penarahan arang
56302 Penarahan arang ayer
56303 Penarahan arang bukit
56304 Penarahan arang gambut
79250 Pepauh
79999 Pepulut
1 6 4 0 1 ~ P e r a h ~
'6501 Perah ikan
'6601 Perupok
6701 Petai
6702 Petai kerayong
6703 Petai meranti
6704 Petai petai
6 8 0 1 ~ P e t a l i n g ~
6 9 0 1 ~ P o d o
6 9 0 2 ~ P o d o ~ b u k i t
6 9 0 3 ~ P o d o ~ c u c o r ~ a t a p ~
5904 Podo kebal musang
5905 Podo kebal musang gunong
j906 Podo laut
3612 Pudu
1001 Pulai
1002 Pulai basong
'003 Pulai penipu bukit
'004 Pulai penipu paya
    005 Pulai pulai
    305 Pulasan
    101 Punah
    201 Punggai, Durian punggai.
    202 Punggai daun besar
    635 Putat
```

Palaquium hexandrum
Palaguium xanthochymum
Palaquium sukoei
Palaquium microphyllum
Palaquium obovatum
Palaquium semaram
Palaquium rostratum
Palaquium impressinervium
Palaguium gutta
Palaguium oxleyanum
Palaguium maingayi
Palaquium hispidumt
Payena lanceolata
Payena obscura
Pouteria malaccensis
Planchonella maingayi
Buchanania spp.
Iyonantes spp.
Eurycoma
Irvingia malayana
Tristania spp.
Pentaspadon spp.
Pentaspadon velutinus
Pentaspadon motleyi
Mesua ferrea
Fanily of Myristicaceae
Myristica cinnamomea
Myristica elliptica
Myristica maingayi
Mycistica lowiana
Iucdia spp.
Chrysophyllum spp.
Elateriospermur tapos
Pimeleodendron griffithianum
Lophopetalum spp.
Parkia spp.
Parkia javanica
Parkia singularis
Parkia speciosa
Ochanostachys amentacea
Podocarpus spp.
Podocarpus neriifolius
Podocarpus imbricatus
Podocarpus motleyi.
Podocarpus wallichianus
Podocarpus polystachy
Artocarpus kemando
Alstonía spp.
Alstonia spatulata
Alstonia macrophylla
Alstonia angustifolia
Alstonia angustiloba
Nephelium spp.
Tetramerista glabra
Ceolostegia griffithii
Ceolostegia borneensis
Earringtonia spp.

79260	Rambai, R. hutan, R. tikus	Baccaurea spp.
77301	Rambutan	Sapindaceae spp.
77302	Rambutan hutan	Nephelium lappaceum
77306	Rambutan pacat, Kikir buntal	Xerospermum spp.
37401	Ramin	Gonystylus spp.t
37403	Ramin daun tebal	Gonystylus brunnescens
37404	Ramin melawis	Gonystylus bancanus
37405	Ramin pinang muda	Gonystylus confusus
37406	Ramin pipit	Gonystylus maingayi
34505	Rawa	Mangifera microphylla
77304	Redan	Wephelium glabrum
67501	Rengas	Family of Anacardiaceae
67502	Rengas ayer	Gluta elegans
67503	Rengas kerbau jalang	Gluta aptera
77504	Rengas padi	Melanochyla auriculata
79265	Rukam, Rokam, Melokam	Flacourtia spp.
79270	Saga, S. daun bulat	Adenanthera
78665	Samak, Kelat s.	Theaceae spp.
78666	Samak pulut	Gordonia concen.
77303	Sanggol lotong	Nephelium spp.
79999	Sebasah	Aporusa spp.
79999	Selada	Goniothalamus spp.
78640	Sena	Pterocarpus indicus
79275	Sendudok	Astronia spp.
77601	Sengkuang	Dracontomelon dao
67701	Sentang	Azadirachta excelsa
77801	Sentul	Sandorjcum koetjape
37901	sepetir	Sindora spp.
37902	Sepetir beludu besar	Sindora velutina
37903	Sepetir daun nipis	Sincora echinocalys
37904	Sepetir daun tebal	Sindora wallichii
37905	Sepetir licin	Sincora coriacea
37906	Sepetir mempelas	Sindora siamensis
78625	Sepul	pasishia spp.
88001	Sesendok	Endospermum malaccense
79260	Setambun, S. tahi, Tampoi, et	Baccaurea spp.
78680	Setumpul	Hydnocarpus spp.
89845	Sial menaun	pternandra spp.
48101	Simpoh	Dillenja spp.
48102	Simpoh ayer	Dillenia suftruticosa
48103	Simpoh beludu	Dillenia ovata
48104	Simpoh daun merah	Dillenia grandicolia
48105	Simpoh gajah	Dillenia reticulata
48106	Simpon padang	Dillenia obovata
48107	Simpon paya	Dillenia pulchella
48108	Simpoh putin	Dillenia albiflos
48109	Simpoh ungu	Dillenia excelsa
43614	Sukun	Artocarpus communis
78201	Surian	Cedrela/toona spp.
78202	Surian batu	Chumrassia tabularis
78203 S	Surian bawang	Cedrela serrata
78204	Surian vangi	Cedrela sureni
35812 T	Taban, Nyatoh taban merah	Palaquium gutta
79260 T	Tambun taik, Tampoi, Setambun	Eaccaurea spp.
79260 T	Tampoi, Rambai h., Setambun	Baccaurea spp.
79280 T	Tapak itik	Euodia spp.t
68301 T	Tembusu	Fagraea spp.

68302	Tembusu hutan	Fagraea gigantea
68303	Tembusu padang	Fagraea fragrans
78685	Tempinis	Streblus spp.
43609	Temponek, Keledang temponek	Artocarpus rigidus
68401	Terap	Family of Moraceae
68402	Terap hitam	Artocarpus scortechinii
68403	Terap nasi	Artocarpus elasticus
38501	Terentang	Campnosperma spp.
38502	Terentang daun besar	Campnosperma auriculatum
38503	Terentang daun kecil	Campnosperma squamatum
38504	Terentang simpoh	Campnosperma coriaceum
89850	Tinjau Belukar	Porterandia spp.
79999	Tongkat ali, Penawar pahit	Eurycoma
43902	Tualang	Koompassia excelsa
63101	Tuba buah, Kayu arang, Meribur	Diospyros spp.
78670	Wulang daing	Millettia atropurpurea
89855	Ubah	Glochidion spp.

[^0]: Compartment 39, Cherul Forest Reserve is located in Kemaman District at the southern part of Terengganu, bordexing the state of Pahang which lies along latitude 4° $5^{\prime N}$ and altitude $102^{\circ} 55^{\prime} \mathrm{E}$ and easily accessible by metal and laterite road. The total area of the compartment amounts to 380 hectares. However, only 200 hectares are utilized for the study. The study area is generally undulating to hilly with elevations ranging from 60 m to 180 m above sea level and disected by Sungai Kok and its many tributaries. This forest is considered as Keruing-Meranti forest and is mananged under the selection management system.

[^1]: L: Fieldcard for - Logging in Virgin Forest * $\quad \mathrm{S}$: Fieldcard for * Silvicultural treatment

